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Theory of monolayers with boundaries: Exact results and perturbative analysis

Joseph Rudnick and Kok-Kiong Loh
Department of Physics, University of California at Los Angeles, Los Angeles, California 90095-1547

~Received 29 March 1999!

Domains and bubbles in tilted phases of Langmuir monolayers contain a class of textures known as boo-
jums. The boundaries of such domains and bubbles may display either cusplike features or indentations. We
derive analytic expressions for the textures within domains and surrounding bubbles, and for the shapes of the
boundaries of these regions. The derivation is perturbative in the deviation of the bounding curve from a circle.
This method is not expected to be accurate when the boundary suffers large distortions, but it does provide
important clues with regard to the influence of various energetic terms on the order-parameter texture and the
shape of the domain or bubble bounding curve. We also look into the effects of thermal fluctuations, which
include a sample-size-dependent effective line tension.@S1063-651X~99!01309-4#

PACS number~s!: 68.10.Cr, 68.18.1p, 68.55.Ln, 68.60.2p
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I. INTRODUCTION

Monolayers of insoluble surfactant molecules confined
the air/water interface possess complex phase structures@1#.
In the ‘‘tilted’’ phases, the long axes of the surfactant m
ecules in the monolayer are uniformly tilted with respect
the normal and the molecular tilt azimuth organizes spon
neously on macroscopic length scales. The structu
adopted by the molecular tilt azimuth are referred to astex-
tures. There is no long-range order of the tilt azimuth in t
liquid expanded (LE) and the gaseous~G! phases. Tilted
phases can coexist with theLE andG ~isotropic! phases and
form micron-sized domains. Alternatively, bubbles of an is
tropic phase may appear against a background of a t
phase. Nontrivial textures in the domains, and around
bubbles, have been observed in theL2 /LE andL2 /G coex-
istence region, where theL2 phase is one of the tilted phase
Boojum textures, similar to those seen in superfluid3He @2#
and smectic-I ~Sm-I ) droplets in liquid-crystal films@3#,
have been observed in the interior ofL2 domains@4#. An
‘‘inverse boojum,’’ which is the texture around the bubb
analogous to the boojum in the case of the domain, has b
identified@5#. The domains and bubbles associated with b
jums are not circular. Among the nontrivial domain shap
seen are protrusions on both bubbles and domains, at t
sharp enough to be characterized as ‘‘cusps’’@4,5# and in-
dentations in domain boundaries which impart a cardioid
pearance to the domain@6,7#. Such domains and bubble
with unusual textures and shapes ought to be observab
other tilted phases as well.

The above textures can be understood in terms of c
tinuum elastic theories of smectic liquid crystals@8#. The
bulk energy is controlled by elastic moduli that quantify t
energy cost of bend and splay distortions. There are
contributions to the boundary energy, known as the line t
sion, that depend on the relative angle between the boun
normal and the tilt azimuth. In equilibrium, the texture in
domain or surrounding a bubble, and the shape of the bou
ary between condensed and expanded regions, adjust so
minimize the total energy of the monolayer. Domains w
nontrivial textures and shapes represent the compromise
PRE 601063-651X/99/60~3!/3045~18!/$15.00
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ing from the competition between the bulk energy and
line tension.

Simultaneous determination of the texture and the bou
ary of the domain poses a calculational challenge. Ear
studies include the exact result discovered by Rudnick
Bruinsma for a domain with isotropic elastic energy and o
the first anisotropic contribution in the Fourier expansion
the line tensions(f) @9#, and the perturbation about th
exact result in terms of coefficient of the second anisotro
term in the expansion@9#. Galatola and Fournier have ap
proached the problem of domains with elasticity and lin
tension anisotropies by searching numerically for the eq
librium domain shapes and positions of domains in a fix
texture background@10#. Rivière and Meunier@4# have at-
tributed their experimental findings on domain shapes
textures to elasticity anisotropy in the same manner as
Ref. @10#. In the work of Fanget al. @5#, nontrivial boundary
shapes for both domains and bubbles, as well as the ‘‘inve
boojum’’ textures in theL2 phase surrounding the bubble
have been reported. A brief account of the theoretical und
standing of the bubbles has also been presented in Ref.@5#.

In this work, we extend the effort of Rudnick and Bruin
sma@9# to analyze the problem of domains with anisotrop
elastic energy in addition to the line-tension anisotropy. W
also generalize the approach to the problem of bubbles
provide a detailed derivation of the results that have b
published in Ref.@5#. Careful analysis reveals that althoug
protrusions can be expected to form on the boundary o
domain of theL2 phase, a ‘‘cusp’’ in the form of a discon
tinuity in the slope of the bounding curve surrounding t
domain will not appear in the parameter regime that is
propriate to the analysis that has been carried out@9,10,5#.
The conclusion in Ref.@9# that a cusp exists is due to a
approximation@12# that affects the qualitative results of th
analysis. The fact that the cusp does not exist and the co
tion for the existence of cusps on the boundary were fi
pointed out by Galatola and Fournier@10#. A formal deriva-
tion of the conditions for the appearance of a cusp will
provided in this paper. Perturbative results, which yield
effects of small anisotropies on the textures and bounda
are obtained. The reliability of the perturbative approa
when the boundary is significantly different from a circle
3045 © 1999 The American Physical Society
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not obvious. Nevertheless, one is provided with useful
sights with regard to the influence of various contributions
the energy of the Langmuir monolayer. In addition, we e
amine the effect of thermal fluctuations. We are led to
renormalized line tension that depends on the radius of
boundary@11#.

We have also implemented a numerical program us
finite element methods for evaluation of the equilibrium te
ture and boundary simultaneously. With the use of this
proach, we are able to explore regions of the parameter s
that are not accessible to the perturbative technique. A b
report on the numerical work has already appeared@13#. A
full description of this method and a systematic review of
results of its implementation are deferred to a future artic

The organization of this paper is as follows. In Sec. II, w
describe the approach in general. In Sec. III, we summa
the exact analytic results. Section IV displays the pertur
tive analysis of the relation between the texture and
boundary. Sections V and VI describe the analysis for
cases of domains and bubbles that results from pertur
about the exact solutions. In Sec. VII, we analyze the eff
of thermal fluctuations. Concluding remarks are contained
Sec. VIII.

II. THE APPROACH

We describe the monolayer by an ordered phase w
XY-like order parameterĉ(x,y)5 x̂ cosQ(x,y)1ŷsinQ(x,y),
a two-dimensional unit vector indicating the direction of t
projection onto the substrate of the tilted hydrophobic tail
the surfactant forming the Langmuir monolayer. The qu
tity, Q(x,y), is the angle thatĉ(x,y) makes with thex axis.
When a regionV contains an ordered phase which is inva
ant under in-plane reflection, the free energy of the sys
takes the general form@8#

H@Q~x,y!#5E
V
HbdA1 R

G
s„q2Q~x,y!…ds, ~2.1!

where

Hb5
Ks

2
u¹• ĉ~x,y!u21

Kb

2
u¹3 ĉ~x,y!u2, ~2.2!

s~f!5s01 (
n51

ancosnf. ~2.3!

Here,Ks andKb are, respectively, the splay and bend elas
moduli, andq is the angle between the outward normal
the boundary and thex axis. The quantitys0.0 is the iso-
tropic line tension. The first integral is over the area,V, of
the system, while the second is over the boundary,G, as
indicated. The setup of the problem in plane-polar coor
nates is shown in Fig. 1.

Minimization of the energy leads to equations forQ(x,y)
and the bounding curveG. Q(x,y) satisfies

2¹2Q1b@~Qxx2Qyy!cos 2Q12Qxy sin 2Q

1~2Qx
21Qy

2!sin 2Q12QxQy cos 2Q#50 ~2.4!
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kQn@12b cos 2~q2Q!#1kbQ t sin 2~q2Q!2s8~q2Q!

50 ~2.5!

along G, whereQn5n̂•¹Q, Q t5 t̂•¹Q, n̂ and t̂ are, re-
spectively, the outward normal and tangential vectors, an

k5
Ks1Kb

2
, ~2.6!

b5
Ks2Kb

Ks1Kb
. ~2.7!

The primes attached to functions denote derivatives, e
s8(f)5ds(f)/df. The extremum equation for the bound
ing curveG, implicitly in terms ofQn , Q t , anddq/ds, is

Hb2s8~q2Q!Qn2s9~q2Q!Q t

1@s~q2Q!1s9~q2Q!#
dq

ds
1l50, ~2.8!

whereds is the length element ofG traversing in the positive
direction ofV andl is a Lagrange multiplier that enforce
the condition of constant enclosed area. The set of equati
Eqs. ~2.4!, ~2.5!, and ~2.8!, are highly nonlinear. It appears
in general, impossible to find general analytical solutions
this set of equations. However, there are full analytical so
tions for special cases.

FIG. 1. The geometry of the calculations for~a! domains and~b!
bubbles in plane-polar coordinates where the boundaryG is param-

etrized byr(w). The gray area is the bulk designated byV. n̂ and

t̂ are the outward normal and the tangent, respectively.Q is the

angle between theĉ director and thex axis andq is the angle
between the outward normal of the boundary and thex axis.
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III. EXACT SOLUTIONS

We start with the assumption of a circular boundary. W
restrict our considerations to isotropic elastic moduli, i.e.b
50. Additionally, we assume that the anisotropic line te
sion, as given by the expansion in Eq.~2.3!, contains only
one term, in thatan50 for all nÞp. We will take ap.0.
This is because the texture withap,0 can be trivially ob-
tained by rotating all ĉ(x,y) simultaneously by (2m
11)p/p, where m is an integerP @0,p21#, due to the
symmetry in the line tension. In this special case, Eq.~2.4!
reduces to Laplace’s equation

¹2Q50 ~3.1!

and Eq.~2.5! in the plane-polar coordinate system becom

kQr2s8~w2Q!50, ~3.2!

kQr1s8~p1w2Q!50, ~3.3!

where Eq.~3.2! applies to the case of a domain while E
~3.3! is appropriate to the case of a bubble. In two dime
sions, the solution to Laplace’s equation can be written
general as

Q~k,w!5
1

i
@ f ~ek1 iw!2 f ~ek2 iw!#, ~3.4!

with f (z) an analytic function ofz5ek1 iw in the region of
interest,V for our case. In the case of a circular domain
radiusR0 centered at the origin, it is shown in Appendix
that

Q0~k,w!5
1

i
@ f 0~ek1 iw!2 f 0~ek2 iw!#, ~3.5!

f 0~z!5
1

p
ln~12apzp!, ~3.6!

apR0
p52e1A11e2, ~3.7!

satisfy Eq.~3.2!. We have defined here a dimensionless
rametere5k/(papR0). Figure 2 illustrates such solution
for p51, 2, 3, and 4. Also displayed in the figure on t
background of each plot is a simulation of the image t
would be obtained by Brewster angle microcopy~BAM !.
The BAM reflectance depends on the exact experime
setup and the properties of the monolayer. A detailed disc
sion on the computation of the BAM reflectance can
found in Ref.@14#. In the case of all simulated images pr
sented in Fig. 2 and elsewhere in this paper, the Brew
angle is taken to be that of waterQB553.12°, the angle of
the analyzera is equal to 90°, the thickness of the mon
layer is assumed to bed50.3 nm, the tiltC is 30°, the
dielectric constants of the monolayer aree'52.31 ande i
52.53, and it is assumed that the wavelength of the lighl
5514 nm. Figure 3 shows the order-parameter distribut
along the boundary for the solution forp51. The plot of the
order-parameter distribution along the boundary is an ef
tive way to examine the texture quantitatively.
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Whenp51, the resulting texture is referred to as theboo-
jum texture. It corresponds to a defect with winding numb
12 @15# lying a distanceRB51/a1 from the center of the
domain. Ase→`, the virtual defect retreats to infinity. A
e→0, corresponding to a very strong anisotropic surface
ergy, or a very large domain, the virtual defect approac
the edge of the domain. However, the distance of the virt
singularity from the boundary of a very large domain r
mains nonzero, approaching the limitk/a1 ase→0.

For the case of a bubble, instead of Eq.~3.4!, we make
use of

Q~k,w!5
1

i
@ f ~e2k1 iw!2 f ~e2k2 iw!# ~3.8!

as a solution to Laplace’s equation. We find that

Q i~k,w!5
1

i
@ f 0~e2k1 iw!2 f 0~e2k2 iw!#1p, ~3.9!

ap

R0
p

52e1A11e2, ~3.10!

FIG. 2. Theĉ-director distribution and the BAM reflectance in
domain computed fork51, R0520, andap51.6, wherep51 in
~a!, p52 in ~b!, p53 in ~c!, andp54 in ~d!.

FIG. 3. The order-parameter distribution along the bound
shown as a plot ofQ0 versusw, wherew is the polar angle in the
plane-polar coordinates. The parameters arek51, R0520, and
a151.6.
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satisfy Eq.~3.3! in the case of a circular bubble of radiusR0
centered at the origin.Q i is shown in Fig. 4 forp51, 2, 3,
and 4. Also shown in the background of each plot is
intensity distribution that would be recorded in a BAM im
age.

When p51, Q i in Eq. ~3.9! can be characterized as a
inverse boojum texture, in that it is obtained by replacingk
by 2k in Q0. This corresponds to a defect with windin
number22 located at a distanceRB5a1 from the center of
the bubble. Whene5`, the defect is at the origin. Ase
→0, it moves towards the edge of the bubble and approac
a distance,k/a1, from the boundary.

Note that in the above discussion the domain and
bubble have beenassumedto be circular. There is noa priori
assurance that this shape minimizes the energy of the sys

As the next step, we determine the equilibrium shape
the domain or bubble. RewritingG asr(w)[ek(w), that is, in
polar coordinates, we transform Eq.~2.8! into

6H bek1H 2s8~q2Q!Qk2s9~q2Q!Qw

1@s8~q2Q!Qw2s9~q2Q!Qk#k8

1@s~q2Q!1s9~q2Q!#S 12
k9

11k82
D J

3
1

A11k82

1l50, ~3.11!

where

q5H w2tan21k8 for domains

p1w2tan21k8 for bubbles.
~3.12!

In Eq. ~3.11!, 1 applies in the case of a domain while2 is
appropriate to the case of a bubble. Equation~3.11! is a

FIG. 4. Theĉ-director distribution and the BAM reflectance fo
bubble computed fork51, R0520, ap51.6, wherep51 in ~a!,
p52 in ~b!, p53 in ~c!, andp54 in ~d!.
e

es

e

m.
f

nonlinear second-order differential equation, and there is
indication that an analytic solution is possible. However,
the specific case of domain in whichb50 andanÞ150 ex-
cepta1, it can be verified that a circular boundary centered
the origin is indeed a solution. Furthermore, such a textu
boundary combination has been shown@16# to be a locally
stable configuration. Interestingly, a circular boundary w
the inverse boojum texture fails to satisfy Eq.~3.11! in the
case of a bubble.

IV. TEXTURE AND BOUNDARY SHAPE

In this section, we assume that the virtual boojum sing
larity lies close to the boundary between a domain or bub
and the neighboring medium, and we focus on the bound
in the immediate neighborhood of the singularity. This
lows us to treat the two regions as semi-infinite. The ani
tropic phase is taken to occupy~approximately! the half-
space for whichx is negative. The setup of the computatio
is depicted in Fig. 5. We first fix the boundary to lie alon
the y axis. We then determine the texture in the anisotro
phase whenb50 and all thean’s excepta1 are equal to
zero. The order-parameter fieldQ(x,y) will be of the form
displayed in Eq.~3.4!, satisfying the boundary condition

@kQx1a1 sin~2Q!#x5050. ~4.1!

This boundary condition is satisfied by the following expre
sion:

QC0~x,y!5
1

i
@ f 0~x1 iy !2 f 0~x2 iy !#, ~4.2!

where f 0(z) is as given in Eq.~3.6! anda5a1 /k. This tex-
ture in fact corresponds to that of a domain in polar coor
nates. Inspection of the boundary condition Eq.~4.1! leads us
to another solutionQCi52QC0, which corresponds to the
texture of a bubble in cylindrical geometry. Figures 6~a! and
6~b! show the distributions of the order parameter and
computed BAM image in this geometry for the domain a
the bubble, respectively. The correspondence betweenQC0
andQ0 for the case of domains can be observed in Fig. 6~a!

in that the ĉ directors tend to point towards each oth
around thex axis. Figure 6~b! corresponds to Fig. 4~a! for the

FIG. 5. The geometry of the calculations for domains a
bubbles in Cartesian coordinates. The gray area is the bulk de

nated byV. n̂ and t̂ are the outward normal and the tangent, r

spectively.Q is the angle made between theĉ director and thex
axis andq is the angle made by the outward normal of the boun
ary and thex axis.
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case of bubbles in that theĉ directors fan out in the direction
of the outward normal of the boundary near thex axis.

To investigate the equilibrium condition for the bounda
G, we parametrizeG in Cartesian coordinates byx5h(y).
The equilibrium condition forG can then be written as

k

2
u¹Qu21s8~q2Q!

h8Qy2Qx

A11h82
1

dq

dh8
s9~q2Q!

3~Qy1h8Qx!A11h82 2@s~q2Q!1s9~q2Q!#

3
h9

A11h823
1l50, ~4.3!

and for the boundary condition aty50

h85
dq

dh8
~11h82!

s8~q!

s~q!
, ~4.4!

whereq52tan21h8 is the angle between the outward no
mal n̂ of G and thex axis.

A cusplike singularity occurs whenh8(0)Þ0. As a result
of the symmetry of the problem,h(2y)5h(y) and
h8(2y)52h8(y). The possible values ofh8(0) can be ob-
tained by solving Eq.~4.4!. Thath8(0)50 is a solution fol-
lows from the fact thats8(0)50. In order that a nonzero
h8(0) solves Eq.~4.4!, the slope of the right-hand side o
Eq. ~4.4! at the origin must be greater than unity, or

d

dh8
F dq

dh8
~11h82!

s8~q!

s~q! G
h850

>1, ~4.5!

which leads us to the cusp conditions(0) @s(0)1s9(0)#
<0. We will exclude such a condition from our discussio
as it requires eitherua1u>s0 or 3a2>s0. Such conditions
are incompatible with the parameter regime on which
focus.

It can be shown thatx50 or they axis is a solution to Eq.
~4.3! when QC0 is used as the texture~for the case of do-
main! while this is not so for the case of the bubble, or wh
the texture isQCi . We continue to investigate perturbative
the response to the texture when the boundary devi
slightly from x50. Let the texture,Q(x,y), be of the form
of Eq. ~3.4! with

FIG. 6. The order-parameter distribution and the BAM refle
tance when the boundaryG is a straight line fork51 and a1

51.6, where~a! showsQC0 for the case of a domain while~b!
showsQCi for the case of a bubble.
,

e

es

f ~z!' f 0~z!1j~z! f 08~z!. ~4.6!

Both h(y), the deviation of the boundary from the straig
line x50, andj(z) in Eq. ~4.6! are small quantities. They
possess the following properties:

h~x!5h~2x!, ~4.7!

j~z!5j* ~z* !. ~4.8!

The boundary condition can then be expressed as

kS ]

]x
1h

]2

]x2
2q

]

]yD QU
x50

1a1 sin~q2Q!ux5h'0,

~4.9!

whereq'2h8. To first order inh,j and their derivatives,
we obtain the following equations:

2ayj8~ iy !

11a2y2
52

2a2yh~y!

11a2y2
6q, ~4.10!

where1 corresponds to the case of domain and2 corre-
sponds to the case of bubbles. The relation betweenh andj
is readily derived:

j~ iy !5E
0

iy11a2y82

2ay8
F2

2a2y8h~y8!

11a2y82
6qGdy8.

~4.11!

Here, we distinguish the primes attached to functions wh
denote derivatives and those attached to variables within
integrals which indicate that they are variables of integrati
Primes will be used in this fashion from now on. The fun
tion j obtained from Eq.~4.11! is defined along they axis.
We now analytically continuej to the entirex-y plane. Up to
this point, we have expressed the distortion of the texture
terms of a fixed boundary deviation from the exact solut
given in the beginning of the section. To examine the so
tion Eq. ~4.11!, it is necessary to determine the textural d
formation associated withh(y)5h0 for domain. We find

j~z!52ah0z. ~4.12!

The resulting texture

Q~x,y!'
1

i
@ f 0~x2h01 iy !2 f 0~x2h02 iy !# ~4.13!

is identical to the domain texture given in Eq.~4.2! except
that the position of the virtual defect is translated by
amounth0 in the positivex direction.

Under a small boundary distortion,x5h(y) away from
they axis, the functionf (z) given in Eq.~4.6! and its deriva-
tive are approximated as

f ~h1 iy !5 ln~12 iay!2
aj~ iy !

12 iay
, ~4.14!

-
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f 8~h1 iy !52
a

12 iay
2

aj8~ iy !

12 iay
2

a2@h1j~ iy !#

~11 iay!2
,

~4.15!

wherej( iy) is given in Eq.~4.10!. When these expression
are substituted into Eq.~4.3!, we obtain, forQ5QC0, which
corresponds to the case of domain,

h95
2da

11a2y2
@ah1j8~ iy !#, ~4.16!

while, for Q5QCi , which corresponds to the case
bubbles,

h95dF4a~12a2y2!

~11a2y2!2
1

2a2~3210a2y213a2y4!

~11a2y2!3
h

1
8ia3y~32a2y2!

~11a2y2!3
j~ iy !1

2a~32a2y2!

~11a2y2!2
j8~ iy !G ,

~4.17!

whered[a1 /s0. We can see that the right-hand side of t
equation for the distorting effect of the texture appropriate
a domain, i.e., Eq.~4.16!, starts at first order inh while the
corresponding equation, Eq.~4.17!, for a bubble starts a
zeroth order inh. This provides further confirmation tha
there is no simple inversion symmetry between the dom
and bubble.

V. DOMAINS

We have established that the boojum texture together w
a circular boundary is an exact solution for the case in wh
b50 and onlya1Þ0. This leads us to the conclusion th
nonzerob and/or higher harmonics in the expansion Eq.~2.3!
must be present if the boundary is to be noncircular. We n
attempt to analyze the situation in whicha1 , a2, andb are all
nonzero. We do this by perturbing about the boojum solut
in terms of small parametersb andg, whereg[a2 /a1.

We note here that the sign ofa1 does not affect any of the
following analysis. As has been mentioned in Sec. II, ifQ0 is
an equilibrium texture fora1.0, then Q5Q01p, repre-
senting a reflection of theĉ directors about thex axis, will be
the corresponding texture fora1,0. The equilibrium bound-
ary is circular in both cases. Furthermore, contributions ob
and a2 appear in the form ofQze

i2Q, which is invariant
under reflection of theĉ directors about thex axis. Qz rep-
resents derivatives ofQ with respect to the variablez which
can bex, y, or any linear combination of the two. Hence, th
effect of a2 and b is independent of the sign ofa1. In the
upcoming discussions, we will assumea1.0 for conve-
nience. The inequalityg.0 refers to the case in which theĉ
directors along the boundary prefer to lie tangent to it wh
g,0 applies when theĉ directors prefer to point along th
normal to the boundary,6n̂. Whenb.0, bend textures are
preferred; splay is preferred whenb,0.

We first find the textural response tog andb by making
use of Eq.~3.4! with
o

in

th
h

w

n

f ~z!5 f 0~z!1 f 1~z!. ~5.1!

It can be shown that Eq.~2.4! is satisfied even withf 1(z)
50. We continue to investigate the boundary condition
the texture assuming that the bounding curve is a circle
radiusR0. Equation~2.5! requires a nonzerof 1(z) satisfying

k@z f18~z!2z21f 18~z* !#1
a1

2 F S 2
z2a

12az
2

12az

z2a D f 1~z!

1S z2a

12az
1

12az

z2a D f 1~z* !G1
kba

R0
F 12az

z~12az* !2

2
z~12az* !

~12az!2 G1a2F S z2a

12azD
2

2S 12az

z2a D 2G50.

~5.2!

In contrast to the notation used in Eqs.~3.6! and ~3.7!, we
have redefinedz[eiw and absorbedR0 into a[R0a1. Equa-
tion ~5.2! can be separated into two equations:

z f18~z!2
1

2e S z2a

12az
1

12az

z2a D f 1~z!

5ba
z2a

z~12az!2
2

g

e S z2a

12azD
2

~5.3!

and an identical equation withz replaced by its complex
conjugatez* . Each of these equations is solvable by stand
methods. One finds

f 1~z!5
g

a~a1e!

z2a

12az
2

e~ba22g!

a1e

~z2a!

12az

3 2F1~1,a/e11;a/e12;2az!, ~5.4!

where 2F1(n,m;m11;z) is a hypergeometric function@17#.
With f 1(z) included,Q(x,y) now satisfies Eq.~2.4! up to
first order ing andb.

The full analytical solution of Eq.~3.11! is difficult when
g andb are both nonzero. However, one can attempt a so
tion as an expansion in the small parametersg, b, k, andk8.
We recall the definition ofr(w)[ek(w)'11k(w). If one
ignores terms beyond first order in these quantities, it is p
sible to solve for the bounding curve,G, analytically. The
algebraic manipulations are dramatically simplified if we fu
ther approximateQn'Qk /R0 and Q t'Qw /R0, which is
equivalent to neglecting the first-order contributions
k8(w). The error of the analysis is then of order;O(dk8),
whered[a1 /s0, which has been defined earlier in Sec. I
The equation for the boundaryG,

HbR01$2s8~w2Q!Qk2s9~w2Q!Qw

1@s~w2Q!1s9~w2Q!#~12k9!%1l50, ~5.5!

can then be reduced to

k9~w!5k19~w!1k29~w!1k39~w!, ~5.6!

where k9 has been separated into various components
shown below, for convenience,
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k19~w!5
dba2~2z1a1e!

~12az!2
1c.c., ~5.7!

k29~w!52dagS z

12az
1

3

z2a
1

3

2a
2

1

ezD S z2a

12azD
2

1c.c., ~5.8!

k39~w!5daF 1

12az
2

z

z2a
2

1

2ez S z2a

12az
1

12az

z2a D G f 1~z!

1c.c. ~5.9!

k1(w) consists of terms that depend onb, k2(w) contains
terms that depend ong, andk3(w) has terms that depend o
both b andg through the textural correctionf 1 given in Eq.
~5.4!. The functionsk8(w) andk(w) can then be obtained b
integrating Eq.~5.6! with respect tow. They are

k18~w!5
dba2

i F2~e1a!ln~12az!1
12a22ae

a~az21! G2c.c.,

~5.10!

k28~w!52
dag

i H F 1

2a
1

3a2

2
2

12a4

e G ln~12az!

1F 1

2a
2

3a

2
1

12a2

e G12a2

az21
1

~12a2!2

2a~az21!2J
2c.c., ~5.11!

k38~w!52
da

i e S ba2
2g

d Dg~az!2c.c., ~5.12!

where

g~z!52
e

a1eE
z 2F1~1,a/e11;a/e12;2z8!

z8
dz8.

~5.13!

One more integration yields

k1~w!5dba2F S e2
1

a
1a D ln~12az!2~e1a!Li2~az!G

1c.c., ~5.14!

k2~w!5
dg

a H 2F 2

a
1

3a3

2
2

12a4

e GLi2~az!

1F2a~12a2!1
~12a2!2

e G ln~12az!

2
~12a2!2

2a~az21!J 1c.c., ~5.15!

k3~w!52
da

e S ba2
2g

d Dh~az!1c.c., ~5.16!

where
h~z!5Ez

g~z8!/z8dz8 ~5.17!

and Li2(z) is the polylogarithmic function defined as

Lin~x!5 (
k51

`
xk

kn
. ~5.18!

Numerical integrations can be utilized for the evaluation
k(w). However, as we can see from the following:

E
0

z z8a/e

12az8
dz852

eza/e11

a1e 2F1~1,a/e11;a/e12;2az!,

~5.19!

the integrand oscillates strongly asa/e→` as a result of the
factor z8a/e and numerical integrations become inefficien
Further observation reveals thatg(z) andh(z) can be evalu-
ated analytically ifa/e[n is an integer. Equation~5.19!
simplifies as follows:

FIG. 7. ~a! Plot of k9(w), k8(w), andk(w) for k51, R055,
s054, a151.6, anda250.5. ~b! The corresponding domain shap
G parametrized asr(w)'11k(w).
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E
0

z z8n

12az8
dz852a2n21F(

i 51

n
~az! i

i
1 ln~12az!G .

~5.20!

When the above simplification is substituted into Eq.~5.13!,
the integration can be performed and yields the analytic fo
of g(z):

g~z!5 (
k51

n F2
1

n2k11
1

1

n11G 1

kzk
1

ln~12z!

n11 F12
1

zn11G .

~5.21!

h(z) can be evaluated analytically in the same manner
we get

h~z!5 (
k51

n
1

~n2k11!k2zk
2 (

k51

n F 1

~n11!2k
1

1

~n11!k2G 1

zk

1
ln~12z!

~n11!2zn11
2

ln~12z!

~n11!2
2

Li2~z!

n11
. ~5.22!

The boundary of the domaink(w)5( j 51
3 kj (w) is smooth

and has continuous derivatives. Typicalk(w), k8(w), and
k9(w)’s are shown in Fig. 7~a!. The corresponding boundar
G parametrized byr(w)511k(w) is depicted in Fig. 7~b!.
We have thus arrived at an approximate expression forG as
a function of the line-tension anisotropy coefficientg and the
elastic anisotropy coefficientb. This expression is usefu
when we are interested in the response ofG for small values
of the these anisotropic parameters.

We first examine the boundary response tog while keep-
ing b50. We find indentations and protruding features
the domain boundary forg,0 andg.0, respectively. The
progressive change of the boundary response whena2
changes from20.5 to 0.5 is illustrated in Fig. 8. The resul
are in qualitative agreement with those presented in R
@10#. We have also examined the dependence of the bou
ary at fixedg on domain size,R0. Figure 9 show boundarie
for domains of sizesR050.2 to 10. WhenR0,1, the do-

FIG. 8. Domain shapes computed fork51, R055, s054, a1

51.6, and ~a! a2520.5, ~b! a2520.3, ~c! a2520.1, ~d! a2

50.1, ~e! a250.3, and~f! a250.5.
d

f.
d-

mains appear slightly flattened and elongated ifg.0. This is
in accord with the intuitive notion that the second-harmo
term in the line tension becomes important as the variatio
the texture vanishes, i.e., in the limit that the order param
is uniform. As the domain gets larger, the boojum singular
moves closer to the edge of the domain and the bound
correction moves towards the axis connecting the cente
the domain and the boojum. Cusplike features start to app
when the domain is larger than a ‘‘threshold’’ size,R051
for the domains in Fig. 9. We note that we have used la
values ofg<0.3 to illustrate the nontrivial boundary that w
have obtained for the domains. It has been numerically v
fied @13# that the qualitative behavior of the boundary r
sponse is indeed preserved up to much larger values ofg.

It has been shown in Sec. IV that the boundaries of
domains are strictly smooth and continuous in the param
regime upon which we focus. We are, however, able to fi
domains with cusplike features in the context of the pert
bative analysis described in this paper. Such domains ca
characterized by anexcluded angleC0 defined in Fig. 10~a!.
Domains with boundaries that resemble those with cusp
features are observed experimentally. The domain-size
pendence ofC0 is shown in Fig. 10~b! @5#. There is no
rigorous mathematical definition ofC0 for a continuous
boundary. It is, nevertheless, possible to devise a system
way of identifying such an excluded angle for a smoo
boundary. One first evaluatesC[22 tan21dx/dy along the
boundary. The value ofC at the straightest part of th
boundary, which is indicated byd2x/dy2→0, is a likely can-
didate forC0. Figures 11~a! and 11~b! show the plot ofC
andd2x/dy2 versusw, respectively. The values ofC in the
plateau region in Fig. 11~a! represent the range in which th
measured excluded angles are likely to fall. These value
C are found in the region near theC axis of the plot ofC

FIG. 9. Domain shapes computed fork51, s054, a151.6,
a250.6, and ~a! R050.2,0.25,0.33,0.5,1 and ~b! R0

52,2.5,3.3,5,10.

FIG. 10. ~a! The definition of the excluded angleC0. ~b! Ex-
perimental measurements of the domain-size dependence ofC0 ob-
served inL2 domains surrounded by LE phase taken from Ref.@5#.
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versusd2x/dy2 shown in Fig. 11~c!. A plot of C versusI
[I 0 exp@2(d2x/dy2)2#, as shown in Fig. 11~d!, highlights the
range of the values ofC that is most likely to contain the
measured excluded angle. Figure 11~e! displaysI as the in-
tensity ~inverted, in that the brightest corresponds to th
smallest value ofI ). Figure 11~f! shows the value ofC at
which I 5I max by the dark line and the region in whichI
.I max/2, or the full width at half maximum~FWHM!, by the
gray band. Figures 11~e! and 11~f! are useful for describing
the selection process by which one is led to the most like
values of the excluded angle. Figures 12~a! and 12~b! illus-
trate such plots. The experimental result is superposed in F
12~b!. The parameters are adjusted in order to obtain a b
eye fit. The values of the parameters arek/a154 mm, d
50.4, andg50.5

The perturbative analysis generates results that are
good agreement with experimental observations@5# for large
domains. It has also captured qualitatively the essential f

FIG. 11. ~a! Plot of C[22 tan21dx/dy versusw for k51,
R055, s054, a151.6, anda250.6. ~b! Plot of d2x/dy2 versusw
for the same parameter.~c! Plot of C versusd2x/dy2. ~d! Plot of C
versusI[I 0exp@2(d2x/dy2)2#. ~e! Density plot of I as C for a
singleR0. ~f! The dark line marks the maximumI max of I while the
gray region shows the range ofC in which I .I max/2.
e

y

ig.
y-

in

a-

tures, namely the onset and the maximum of the domain-
dependence of the excluded angle. As displayed in F
12~b!, the maximum and the onset ofC0 are quantitatively
different in the perturbative analysis and in the experimen
data in the intermediateR0 regime. In particular, the experi
mental maximun ofC0 cannot be obtained from the analys
even thoughg50.5 has been used. We shall defer the d
cussion on this to the end of this section after elaborating
the effect of the elastic anisotropyb. We also note thatg
50.5 is very large as a perturbative parameter. Althou
there is noa priori guarantee of the accuracy of the results
is evident from our numerical studies@13# that the qualitative
behavior of the boundary as a function of the domain size
preserved in the perturbative analysis up to at leastg50.5.

We now proceed to examine the effect ofb on the bound-
ary G. The coefficient of the anisotropic line tensiong is
kept at zero and the boundary response is proportional tb.
Figure 13 shows the plot ofk(w)/b. In contrast to the results
obtained by Galatola and Fournier@10#, the boundary ac-
quires a denting correction whenb,0, indicated by a maxi-
mum in k(w)/b at w50. This perturbative result is con
firmed for small values ofb (50.1) by our numerical
studies@18#. At such small values ofb, the boundary is prac-
tically circular. We shall restrict our discussion to the effe
on G of small values ofb, in that higher-order corrections o
b, which are not taken into account in this first-order pert
bative analysis, change the qualitative behavior of the bou

FIG. 12. ~a! Density plot ofI as a function ofC andR0. ~b! Plot
of I max and the region in whichI .I max/2 as a function ofC andR0.
Superimposed are the experimental data shown in Fig. 10~b! with
parametersk/a154 mm, d50.4, andg50.5.

FIG. 13. Plot ofk(w)/b for k51, R055, s054, a151.6, and
a250. The maximum ofk(w) at w50 implies a protruding correc-
tion whenb.0.
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ary response, as reflected by our numerical studies@13#.
As for the role ofb in the interpretation of the experimen

tal observations, we conclude in our numerical studies@13#
that a nonzero value ofb cannot be solely responsible for th
protruding features, and hence the excluded-angle meas
ments. Large values ofg'0.5 are required to produce ex
cluded angles whose maximum approaches the largest v
of experimentally measured excluded angles. At sufficien
large values ofg, we have found that the behavior of th
excluded angle is qualitatively unchanged when the ani
ropy parameterb is varied from20.5 to 0.5. Although the
validity of the perturbative analysis atb.0.1 is questionable
the relative magnitude of the correction to the boundary ob
is much smaller than that ofg. This is further verified by
numerical studies@18#.

We have thus demonstrated, within our first-order pert
bative analysis, that the line-tension anisotropyg can give
rise to the indentations and protruding features of the dom
boundaries that have been experimentally observed@7#. Our
results on the boundary response tog are in qualitative
agreement with prior results@10,13#. Although our investiga-
tion of theb dependence of the boundary does not provide
with dependable results for large values ofb, it supports the
assertion that the textural correction is an important con
bution to the boundary response. Further analysis of
available experimental data on the excluded angles lead
the conclusion thatb has little effect on the boundary of th
domains with protrusions. We shall confine our conclusio
to small values ofubu,0.1, although large values ofb;0.8
do lead to interesting domain shapes. Discussions of the
main boundaries at large values ofb will be presented in a
forthcoming article@18#, and some of the results have be
briefly presented in Ref.@13#.

We obtain good agreement between the results of the
turbative analysis and the experimental observations on
C0 dependence on the domain radiusR0 in the large-R0
regime. In the intermediate-R0 regime, the discrepancy is no
resolved, even in our numerical studies@18#. The mismatch
could possibly be attributed to the fact that our simple ela
theory does not describe accurately the actual comp
monolayer. In the perturbative analysis performed in t
work, the parameters are restricted to a region in wh
s(w)1s9(w) is always greater than zero. Furthermore, it
generally known that the dipolar interactions between
surfactant molecules in the monolayer are important. T
current model does not take into account such interaction
has been discovered in a recent experimental study@19# that
the tilt is not always uniform, especially in the region arou
a point defect. The contribution of variation in tilt may n
be significant in terms of accounting for the discrepancy
the intermediate-sized domain regime. It does become
portant in the large-R0 regime when the virtual singularity
approaches the domain boundary and the texture acquir
rapid variation in the neighborhood of the virtual singulari

VI. BUBBLES

It has been shown in Secs. III and IV that there is
straightforward inversion symmetry between the doma
and the bubbles. In contrast to the case of the domain,
not necessary to introduce anisotropic parameters other
re-
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a1. The inverse boojum textureQ i given in Eq.~3.9! and Eq.
~3.10! satisfies the equilibrium condition for a circula
bubble for the case in which theĉ directors favor pointing
into the bulk ora1.0. SubstitutingQ i into the equilibrium
condition for the boundaryG Eq. ~3.11!, one finds that a
circular boundary does not satisfy the equation. By pertu
ing about the circular boundary in terms of a small parame
d[a1 /s0, we arrive at an equation similar to Eq.~5.6!,

k9~w!522a2de
z2

~12az!2
1c.c. ~6.1!

Again—see Eqs.~3.9! and ~3.10!—we have redefinedz
[eiw and a[a1 /R0. Following the same procedure as fo
the case of a domain, we find fork8(w) andk(w)

k8~w!52
2de

i F 1

12az
1 ln~12az!G2c.c., ~6.2!

k~w!522de@ ln~12az!1Li2~az!#1c.c. ~6.3!

It should be kept in mind that the above discussion refers
the casea1.0. The results fora1,0 arenot obtained by a
simple sign reversal ofa1 in Eq. ~6.3!. Appropriate changes
in the texture and definition ofe, which is given as
k/(ua1uR0), must be taken into account. The details of t
calculations are presented in Appendix C. The final bound
curve for the bubble depends only on the magnitudeua1u. We
have derived expressions forG for the cases where there
only ana1 contribution in the line tension.

One can utilize the results to investigate the bubble-s
dependence of the boundary shapes. Figure 14 shows
shapes for the bubbles of sizesR050.2 to 10. Very small
bubblesR0!1 are nearly circular, as are very small d
mains. Cusplike features start to appear when the bubb
larger than a ‘‘threshold’’ size,R051 for the bubbles shown
in Fig. 14. Similar analysis of the excluded angle to that
the domain presented in Sec. V can be carried out. Figure
shows plots ofC versusR0 corresponding to those in Fig
12. Experimental measurements@5# of the cusp angle for the
bubble are superposed in Fig. 15~b!. A by-eye fit can be
obtained with parametersk/a150.4 mm andd50.16. We
find fairly reasonable agreement between the theory and
perimental observations. We remark that the apparent m
match between the theory and the experimental data poin
R051 mm, which has been shown to match the expli
measurement on the calculated bubble boundary in Ref.@5#,
may be the result of the inadequacy in qualifying the e
cluded angleC0 for bubbles with R0,1 mm using the
FWHM of I shown in Fig. 11~f!.

FIG. 14. Bubble shapes computed fork50.16, s051, a1

50.16, and~a! R051,2,3,4,5,6,8 and~b! R058,20,40.
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As compared to the parameters obtained for the dom
in Sec. V, which arek/a154 m m, d50.4, andg50.5, the
value ofk/a1 for the case of bubbles is an order of mag
tude smaller than that for the case of domains. Noting
fact that the data for the bubbles are obtained at theL2 /G
coexistence region and those of the domains are meas
when theL2 domains are surrounded by theLE phase@5#,
the comparison ofk/a1 between the domains and th
bubbles is indeed in accord with the intuitive sense thatk of
the L2 domains should not vary significantly whilea1 at the
L2 /G interface is much larger than that at theL2 /LE bound-
ary. Thed ’s are of the same order of magnitude and there
no correspondingg in the case of bubbles. The result of th
perturbative analysis is consistent between the domains
the bubbles.

VII. THERMAL FLUCTUATIONS

The analysis presented in the earlier sections is in
mean-field approximation; thermal fluctuations are ignor
In this section, we examine the effect of thermal fluctuatio
and its implications to the computation that has been car
out. The effect of fluctuations can be assessed by utilizin
mapping between the statistical mechanics of the ord
parameter fluctuations in this system and the behavior
two-dimensional Coulomb gas.1 Consider the Hamiltonian o
the form of Eq.~2.1!, with b50 andan50 for all nÞp. For
a system with circular boundary of radiusR0, one has

H8@Q#5H@Q#22ps0R0 . ~7.1!

The prime here distinguishes the free energy from the
defined in Eq.~2.1!. The prime is dropped from now on fo
convenience. The partition function can be written as

1We are grateful to Professors H. Saleur and P. Fendley for g
erously providing us with this idea for the analysis of thermal flu
tuations@11#.

FIG. 15. ~a! Plot of I as a function ofC andR0. ~b! Plot of I max

and the region in whichI .I max/2 as a function ofC andR0. Su-
perimposed are the experimental observations of gaseous bubb
L2 phase. The experimental data have appeared in Ref.@5#. The
parameters for the by-eye fit arek/a150.4 mm andd50.16.
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Z~ap!5Z~0!K expF2bap R cosp~w2Q!dsG L
0
,

~7.2!

where^O&0 denotes the thermal average with respect to
Hamiltonian without the boundary term given below,

^O&05

E DQ O expS 2
bk

2 E dAu¹Qu2D
E DQ expS 2

bk

2 E dAu¹Qu2D . ~7.3!

We denoteQb(w)[Q(R0 cosw,R0 sinw) as the values of
Q on the boundary of the circular domain. The followin
correlation function can be evaluated@11#:

^Qb~w!Qb~w8!&052D ln2Usin
w2w8

2 U, ~7.4!

whereD[1/2pbk.
To evaluate the full partition function Eq.~7.2!, we Taylor

expand the exponent as

Z~ap!

Z~0!
5 (

n50

`

~2bap!n
1

n! K )
i 51

n F R dsi

a
cosp~w i2Q i !G L

0

,

~7.5!

where we have added an indexi to distinguish the various
cosine terms, denotedQ i[Q(R0 coswi ,R0 sinwi) for conve-
nience, and introduced a microscopic length scalea in the
denominator inds to make the total integration dimension
less. We use cosf5(eif1e2if)/2 and then expand the prod
ucts of the cosine terms,

Z~ap!

Z~0!
5 (

n50

` S 2bap

2 D n 1

n!)i 51

n R dsi

a

3(
$qi %

Fe2 i(
i 50

n

qiw iK ei(
i 50

n

qiQ iL 0G , ~7.6!

where we have defined chargeqi56p for each of the cosine
terms in Eq.~7.5! and denoted($qi %

a sum over all charge
configurations. The thermal average can be evaluated exa
using Wick’s theorem; we obtain the following equality:

^ei ( i 50
n qiQ i&05e21/2^~( i 50

n qiQ i !
2&0 . ~7.7!

The averagêQ2&0 encountered in Eq.~7.7! can be evaluated
using the inverse of the microscopic length scale 1/a as the
ultraviolet cutoff. We have the following:

^Q2~w!&05 lim
w→w8

^Q~w!Q~w8!&05D ln
R0

a
. ~7.8!

The contributions of the charge configurations in whi
( iqiÞ0 to the partition function are suppressed as a resu
excess factors of exp@2(p2D/2)ln(R0 /a)#. Therefore, it is nec-
essary to sum only over the configurations in which there
no net charge. Finally, the full partition function can be e
pressed as follows:

n-
-

s in
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Z~ap!

Z~0!
5 (

n50

` S 2bap

2 D 2n 1

~2n!!)i 51

2n R dsi

a

3 (
$(qi50%

e2 i ( i 50
2n qiw ie2D/2( i , j qiqj ln@~xW i2xW j ! /a#,

~7.9!

analogous to the expression of the partition function fo
system of 2D neutral Coulomb gas. The charge of the p
ticles is pAD/2 and the particles are distributed along t
circumference of the domain. Following the Coulomb g
treatment for the 2D phase transitions@20#, we derive flow
equations for the running coupling constants,

a
dap~a!

da
5F12

p2D~a!

2 Gap~a!, ~7.10!

a
dD~a!

da
522p2D2~a!ap

2~a!. ~7.11!

For ap(a)!1, we have the following:

ap~a!

ap~a0!
5S a

a0
D 12p2D/2

. ~7.12!

The scaling relation implies the relevancy, and the irr
evancy transition temperature ofap(a) at Tp is given by

kBTp5
4pk

p2
. ~7.13!

As compared to the Kosterlitz-Thouless transition tempe
ture kBTKT5pk/2, T1 andT2 are aboveTKT . Our result is
analogous to the scaling index of the symmetry-break
perturbation in the 2D planar model obtained by the sp
wave approximation@21#.

In the low-temperature phase, we consider fluctuations
to a cutoff that is proportional to the sample size, ora;R0,
and consider the renormalized coupling constantap
5ap(R0)R0. We find the scaling relation,

ap;R0
2p2D/2. ~7.14!

Based on a theory of fixedk, the renormalized anisotropi
line tension decreases as a power law withR0, the radius of
the boundary, with exponent2p2D/2. Using this relation,
we investigated the effect of thermal fluctuation on the d
main boundary. The result is depicted in the plot ofC at the
maximum ofI, C0, as a function ofR0 in Fig. 16. We notice
the rounding off at the maximum ofC0 and the decrease i
the magnitude ofC0 with increasing temperature. The abo
comparisons are made for domains withd50.4 and g
50.38 whenR050.2.

We can also look at the effect of fluctuations onb. We let
an50 for all n and the Hamiltonian becomes

H@Q#5
k

2E $u¹Qu21b@~2Qx
21Qy

2!cos 2Q

22QxQy sin 2Q#%dA. ~7.15!
a
r-

s

-

-

g
-

p

-

The partition function

Z~b!5Z~0!K expFbbk

4 E ~Q z̄
2
ei2Q1Qz

2e2 i2Q!dAG L
0

,

~7.16!

which leads to the flow equations similar to those forak ,

a
db~a!

da
522D~a!b~a!, ~7.17!

a
dD~a!

da
522p2D2~a!b2~a!, ~7.18!

from which we deduce thatb is always irrelevant at finite
temperature.

Following the same argument as for the case ofap , we
consider fluctuations that cut off ata;R0 in the ordered
phase, and take the renormalized coupling constanb
5b(R0). We find that theb scales asR0

22D in a theory with
fixed k. When thermal fluctuations are important, the ma
nitude ubu is at its maximum (<1) for the smallestR0 and
decreases asR0 increases. Thermal effects reduce the alrea
insignificant boundary correction due tob. This reinforces
our earlier conclusion thatb has no significant influence o
the domain boundary.

In summary, thermal fluctuations act to renormalize t
anisotropic parameters. The influence of thermal fluctuati
on the boundary shape can be studied using the mean-
approximation with renormalized anisotropic paramete
The boundary correction due to elastic anisotropy, which
negligible atT50, further decreases as a result of therm
fluctuations. The deviation of the boundary from a circle th
results from line-tension anisotropy is displayed in terms
the domain-size dependence of the excluded angle in Fig
The maximum of the excluded angle, which is higher in t
experimental observations than predicted atT50 ~see Fig.
12!, will be reduced when thermal fluctuations are intr
duced. This indicates that the line-tension anisotropy of
monolayer system under study may be very strong.

VIII. CONCLUSIONS

We have described in this paper a systematic investiga
of a system of a 2D ordered medium with a boundary. B

FIG. 16. Plots ofC0 as a function ofR0 for k51, s054 at
T50, 0.1TKT , 0.3TKT , 0.5TKT , and 0.7TKT . At R050.2, all do-
mains have the same renormalized coefficients in the expansio
the anisotropic line tension, namelya151.6 anda250.6.
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ginning with the free energy Eq.~2.1!, which describes a
bounded monolayer, we have derived the Euler-Lagra
equations for the texture and the boundary. From the bou
ary conditions we have shown that the boundary under c
sideration must be smooth. A continuation of the analysis
the spirit of Ref.@9# for the cases of both the domains and t
bubbles reveals that bubbles do not remain circular when
only term in the anisotropic line tension, as given by E
~2.3!, is a1 cosf, while circular domains are not affecte
There is, thus, no simple inversion symmetry between
mains and bubbles, as one would intuitively expect. Per
bative calculations have been carried out to investigate
influence of thea2 term, the second-harmonic contribution
the line tension, and the elastic anisotropy, parametrized
b, for the domains. Assuming the domains are nearly circu
and the anisotropies are weak, the perturbed domain sh
are then computed analytically to first order in small para
eters. We have examined the boundary response to the
isotropic parametersb anda2. Our results for the boundar
response toa2 are in qualitative agreement with those r
ported in Refs.@10,13#. We have also obtained the depe
dence of the boundary shape on domain size that is in qu
tative agreement with experimental findings whenb50
@5,7#. As for the boundary response tob, our perturbative
results contrast with the conclusions arrived at in Ref.@10#.
Textural correction plays an important role. These conc
sions are confirmed in our numerical studies@13,18#. The b
contribution to the boundary is much weaker than that of
line-tension anisotropy. The quality of the fit to the curren
available experimental observations is not sensitive to
value ofb in the range from20.5 to 0.5. Considering only
the line-tension anisotropya2, the result of the perturbative
analysis has qualitatively captured the essential feature
the experimental observations. The quantitative misma
can be attributed in part to the inapplicability of a perturb
tive approach to a parameter region in which the anisotro
parameters are large. The detailed difference between
simple model we adopt and the actual complex underly
structure of theL2 domains may also contribute to such d
crepancies. Long-range dipolar repulsion has been igno
The tilt degree of freedom@19#, which may not be significan
in the small domain regime but can be important in the lar
R0 region, is not included.

In the case of the bubbles, we evaluate the boundary
sponse due to thea1 contribution in the line tension. We ar
able to produce a dependence of the shape of the boun
curve on bubble size that compares favorably with exp
mental observations. This result has been reported earlie
Ref. @5#. The parameters of the domains and those of
bubbles, both obtained with by-eye fit of the result of t
analysis to the experimental data, are in reasonable ag
ment, taking into consideration the fact that the data for
domains are taken in theL2 /LE coexistence region an
those for the bubbles are obtained for gaseous bubbles
rounded by theL2 phase. Finally, we have presented
analysis of the effect of thermal fluctuations that leads t
domain-size dependence of the line-tension and ela
anisotropies. The analysis also suggests that the line-ten
anisotropy may be very strong.
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APPENDIX A: GEOMETRY AND COORDINATE
SYSTEMS

We enumerate in this section the forms taken by vario
geometrical quantities of a 2D space curve in different co
dinate systems and the relationships between those form
curve G surrounding V can be represented by a on
parameter trajectory of the position vectorrW(t), where t is
parameter. Its unit tangent vector is given byt̂5drW/ds and
the unit outward normal is given byn̂5nW /unW u, wherenW 5

6d2rW/ds2 and ds[udrW/dtudt. We let q be the angle be-
tween the normal vector of the curve and a reference a
Then the radius of curvature isuds/dqu.

Consider the problem of a nearly circular domain. T
coordinate system of choice is obviously plane-polar. It
convenient to usew as the independent variable. We the
write G as rW(w)5ek(w)r̂, whereek(w) is the radial distance
from the origin andw is the polar angle atrW. A length ele-

ment given byds5ekA11k82dw is in the positive direction
of V. The unit vectornW 52d2rW/ds2 points away from the
origin, or outwards fromG,

t̂5
k8r̂1ŵ

A11k82
, ~A1!

n̂5
r̂2k8ŵ

A11k82
. ~A2!

We have cosq5n̂•x̂, which givesq5w2tan21k8. It follows
that

dq

ds
5S 12

k9

11k82D 1

ekA11k82
. ~A3!

Similar relations can be derived for the case of a nearly
cular bubble. Here, the length element in the positive dir

tion of V is ds52ekA11k82dw and the outward norma
nW 5d2rW/ds2. We obtainq5p1w2tan21k8. The geometri-
cal quantities are evaluated as follows:

t̂52
k8r̂1ŵ

A11k82

, ~A4!
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n̂52
r̂2k8ŵ

A11k82

, ~A5!

dq

ds
52S 12

k9

11k82
D 1

ekA11k82

. ~A6!

Cartesian coordinates are useful when we are intereste
a small region of a large circular domain or bubble, on
scale of which the boundary is nearly a straight line. In C
tesian coordinates, we have for the position vectorrW(t)
[x(t) x̂1y(t) ŷ, wherex̂ andŷ are the unit basis vectors. W
can always picky as the independent variable andx5h(y)
as the dependent variable for the curveG. The symbolh(y)
is chosen deliberately to avoid confusion with the indep
dent variablex for the textureQ. We takeV to reside in the
regionx,0, assume thatG nearly coincides with they axis,
and take the virtual defect to be inx.0 near they axis as

depicted in Fig. 5. We haveds5A11h82dy traversing
along the positive direction ofG andnW 52d2rW/ds2. We im-
mediately obtain

t̂5
h8x̂1 ŷ

A11h82
, ~A7!

n̂5
x̂2h8ŷ

A11h82
. ~A8!

The angle between the normal and thex axis is q5
2tan21h8, and

dq

ds
52

h9

A11h823
. ~A9!

APPENDIX B: THE EXTREMUM EQUATIONS

We begin with the free energy Eq.~2.1!. In Cartesian
coordinates, the elastic energy densityHb in Eq. ~2.2! is
given as

Hb5
k

2
$u¹Qu21b@~2Qx

21Qy
2!cos 2Q22QxQy sin 2Q#%.

~B1!

Taking the variation ofH@Q# with respect toQ, we find

dH5E
V
F]Hb

]Q
2

]

]x

]Hb

]Qx
2

]

]y

]Hb

]Qy
GdQdA

6 R GF2
]Hb

]Qy

dx

ds
1

]Hb

]Qy

dy

dsGdQds

2 R G
s8~q2Q!dQds. ~B2!
in
e
-

-

The boundary integralrG is taken counterclockwise. The1
in Eq. ~B2! is appropriate to the case of domains while2 is
appropriate to bubbles. The equilibrium conditiondH/dQ
50 results in the Euler-Lagrange equation

]Hb

]Q
2

]

]x

]Hb

]Qx
2

]

]y

]Hb

]Qy
50 ~B3!

for (x,y)PV, which can be reduced to Eq.~2.4!. The bound-
ary conditions can be expressed in a Cartesian coordi
system as follows:

kH Qx

dy

ds
2Qy

dx

ds
1bF2S Qy

dx

ds
1Qx

dy

dsD cos 2Q

1S Qx

dx

ds
2Qy

dy

dsD sin 2QG J 7s8~q2Q!

50. ~B4!

To display the derivation of the equilibrium equation f
the bounding curveG, it is more convenient to utilize plane
polar coordinates. In the case of a domain, we rewrite
free energy in plane-polar coordinate as follows

H@k#5E
2p

p F E
0

k

Hbe2k1dk1

1s~w2tan21k82Q!ekA11k82Gdw. ~B5!

We then take a variation of the free energy with respec
k(f). The equilibrium condition results in the Eule
Lagrange equation

]H
]k

2
d

dw

]H
]k8

50, ~B6!

where

H@w;k,k8#5E
0

k

Hbek1dk11s~w2tan21k82Q!

3ekA11k82. ~B7!

To continue, we now look at the partial derivative ofH with
respect tok. We have

]H
]k

5H be2k1~s2s8Qk!e
kA11k82. ~B8!

We have also the partial derivative ofH with respect tok8,

]H
]k8

5
~2s81sk8!ek

A11k82

. ~B9!

Taking the derivative of Eq.~B9! with respect to the inde-
pendent variablew results in
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d

dw

]H
]k8

5Fs9~Qkk81Qw!2s8k8~Qkk81Qw!

A11k82

2
sk821s9

A11k82
2

~s1s9!k9

A11k82 3 Gek. ~B10!

Equation~3.11! for the case of a domain follows immed
ately from the substitution of Eqs.~B8! and ~B10! into the
Euler-Lagrange equation, Eq.~B6!. We have assumed her
that the curve joins smoothly atw52p,p and there is no
boundary contribution from these two end points. Howev
we are particularly interested in finding out if a cusp, in t
form of a discontinuity in the slope of the bounding curv
exists. In our system, which is symmetric about thex axis,
the singularity is expected to occur on thex axis. We thus
allow for the possibility thatG has a discontinuity in slope a
w50 and determine the condition for the discontinuity. T
assumption of a discontinuity inG gives rise to an extra
boundary condition atw50,

]H
]k8

U
01

50. ~B11!

Using Eq.~B9! and the fact thatQ(ek)50, we thus get

k85
s8~2tan21k8!

s~2tan21k8!
. ~B12!

For the line tension given in the form of Eq.~2.3!, k850 is
always a solution to Eq.~B12!. In order fork8 to be nonzero
at w50, it is necessary that the slope of the right-hand s
as a function ofk8 at k850 be greater that unity, i.e.,

d

dk8

s8~2tan21k8!

s~2tan21k8!
U

k850

>1. ~B13!

This implies s(0)@s(0)1s9(0)#<0. We have excluded
such a condition, in that it requires eitherua1u>s0 or 3a2
>s0, both of which are well beyond the parameter regim
that we are focusing on. The boundaryG that we are solving
for will not have a singularity.

In the case of a bubble, we have

H@w;k,k8#5E
k

`

Hbek1dk11s~p1w2tan21k82Q!

3ekA11k82. ~B14!

This is similar to Eq.~B7! apart from the limit of integration
in the first term on the right-hand side of the equation.

In the case of the Cartesian coordinate system, we w
the free energy as

H@h#5E
2`

` F E
2`

h
Hbdx1s~q2Q!A11h82Gdy

~B15!
r,

,

e

e

te

and the equilibrium condition can be obtained using the f
lowing Euler-Lagrange equation:

]H
]h

2
d

dy

]H
]h8

50, ~B16!

where

H~w;h,h8!5E
2`

h
Hbdx1s~q2Q!A11h82. ~B17!

APPENDIX C: SAMPLE CALCULATION

We present here an analysis of the equilibrium equati
for the special case in whichb50 and only a singleap.0.
In this case, the bulk equation is automatically satisfied if
write Q in the form of Eq.~3.4!. We first consider the case o
a domain, for which the boundary condition is given by E
~3.2!. We substitute the boojum textureQ0 and find

kaepk

iR0
F2

eipw

12aep(k1 iw)
1

e2 ipw

12aep(k2 iw)G
2

api

2 F eipw2aepk

12aep(k1 iw)
2

e2 ipw2aepk

12aep(k2 iw)G50

⇒ k

iR0
F2

1

12aep(k1 iw)
1

1

12aep(k2 iw)G
2

api

2aepk F 12a2e2pk

12aep(k1 iw)
2

12a2e2pk

12aep(k2 iw)G50

⇒~a2e2pk12eaepa21!F 1

12aep(k1 iw)

2
1

12aep(k2 iw)G50. ~C1!

The above boundary condition is to be satisfied for
(ek,w)PG and hence the coefficient in Eq.~C1! has to be 0,
which givesaepk52e6A11e2, wheree[k/(papR0). To-
gether with the requirement thatQ does not have a singular
ity in V, we arrive at Eq.~3.7!, whereR05ek is the radius of
the circular boundary. As for the case whereap,0, we sub-
stituteQ25Q01p/p into the boundary condition Eq.~3.2!.
Requiring that the texture is continuous inV, and we find
Eq. ~3.7! with e[k/(puapuR0). The results for bubbles ca
be obtained in a similar manner. Although we have dem
strated a solution ofQ for p any integer, a circular domain
shape does not satisfy the equilibrium condition forG in
general.

We now examine the domain shape for the case in wh
p51 by substituting the boojum texture and a circu
boundary into Eq.~3.11!. We have
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k

2
u¹Q0u25

k

2
$2@eiw f 08~ek1 iw!2e2 iw f 08~ek2 iw!#

1@eiw f 08~ek1 iw!1e2 iw f 08~ek2 iw!#%

52k f 08~ek1 iw! f 08~ek2 iw!

5
2ka2

~12aek1 iw!~12aek2 iw!

5
2ka2

12a2e2k S aek1 iw

12aek1 iw
1

aek2 iw

12aek2 iw
11D

5a1aS 1

12aek1 iw
1

1

12aek2 iw
21D ~C2!

and

s8~w2Q0!Q0k1s9~w2Q0!Q0w

5
a1

2
$@ei (w2Q0)2e2 i (w2Q0)#@ek1 iw f 08~ek1 iw!

2ek2 iw f 08~ek2 iw!#2@ei (w2Q0)1e2 i (w2Q0)#

3@ek1 iw f 08~ek1 iw!1ek2 iw f 08~ek2 iw!#%

52a1ek@eiQ f 08~ek1 iw!1e2 iQ f 08~ek2 iw!#

5a1aekS 1

12aek1 iw
1

1

12aek2 iwD . ~C3!

Substituting Eqs.~C2! and ~C3! into Eq. ~3.11!, all the w
dependence cancels exactly. Equality is achieved by pick
l5a1aek2a0. We conclude that the circular domain wit
boojum texture is an equilibrium configuration for the ca
wherep51. It is obvious that this is in general not true fo
any otherpÞ1.

We now examine the case of the bubble forp51. We
substitute the inverse boojumQ i into Eq. ~3.11!. We com-
pute the following whenĉ directors on the boundary favo
pointing in the bulk, or pointing away from the center of th
bubble, ora1.0,

s8~p1w2Q i !Q ik1s9~p1w2Q i !Q iw

5
a1a

ek Feiw~eiw2ae2k!

~12ae2k1 iw!2
1

e2 iw~e2 iw2ae2k!

~12ae2k2 iw!2 G .

~C4!

When theĉ directors on the boundary favor pointing awa
from the bulk, or pointing toward the center of the bubble,
a1,0, we obtain

s8~w2Q i !Q ik1s9~w2Q i !Q iw

5
ua1ua

ek Feiw~eiw2ae2k!

~12ae2k1 iw!2
1

e2 iw~e2 iw2ae2k!

~12ae2k2 iw!2 G .

~C5!
g

r

And the following contribution is independent of the sign
a1:

k

2
u¹Q i u25

ua1ua

e2k S 1

12ae2k1 iw
1

1

12ae2k2 iw
21D .

~C6!

ApproximatingQn'2Qk , Q t'2Qw , and putting together
the above contributions, we find

k952
a1a

s0ek F 1

12ae2k1 iw
1

eiw~eiw2ae2k!

~12ae2k1 iw!2
1c.c.G

52
a1a

s0ek Fei2w22ae2k1 iw11

~12ae2k1 iw!2
1c.c.G

52
a1a

s0ek F ~12a2e22k!ei2w

~12ae2k1 iw!2
111c.c.G

52
2a1a2e

s0e2k F ei2w

~12ae2k1 iw!2
111c.c.G , ~C7!

which reduces to Eq.~6.3!. We keep in the expressions ofk9
only the apparently nontrivial terms and drop arbitrarily t
constant terms for convenience. In the actual evaluation ok,
the constant is reinserted intok9 to enforce the symmetry
requirementk8(w)52k8(2w). The boundary correction is
taken to have little modification to the overall area enclos
and the treatment for fixing the area using the Lagrange m
tiplier l is ignored.

APPENDIX D: EVALUATION OF THE THERMAL
AVERAGES

In this appendix, we describe the detail evaluation
^Q(w)Q(w8)&0 and ^exp@i(qiQ(wi)#&0 that we encountered
in Sec. VII. The averagêO&0 is taken with respect to

H0@Q#5
k

2EV
dAu¹Qu2. ~D1!

We first note that the extremum equation forQ is given by
Laplace’s equation¹2Q50 in which the solution accommo
dates any boundary condition. Hence we can writeQ(x,y)
5Q1(x,y)1Q2(x,y) in general, where

¹2Q150, ~D2!

Q2uG50. ~D3!

It can be shown further thatQ1 indeed minimizesH0@Q#. At
low temperature, contributions from largeQ2 are suppressed
in the partition function. We shall assumeQ2!Q1 and
H0@Q# is second order inQ2. The quantityQ2 can be ne-
glected and we have, in the case of a domain,

Q5 (
m51

`

rm~ameimw1am* e2 imw!. ~D4!

H0@Q# can then be evaluated,
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H054p (
m51

`

muAmu2, ~D5!

whereAm5amR0.
We let Q0(w)5Q(R0 cosw,R0 sinw),

^Q0~w!Q0~w8!&05

E ~DQ!Q0~w!Q0~w8!e2bH0

E ~DQ!e2bH0

5

)
n
E dAndAn* (k(k8~Ake

ikw1Ak* e2 ikw!~Ak8e
ik8w81Ak8

* e2 ik8w8!e22pbk(mAmAm*

2)
n
E dAndAn* e22pbk(mAmAm*

5 (
k51

@eik(w2w8)1e2 ik(w2w8)#
E dAkdAk* AkAk* e22pbkkAkAk*

2E dAkdAk* e22pbkkAkAk*
5

D

2 (
k51

eik(w2w8)1e2 ik(w2w8)

k

52
D

2
$ ln@12ei (w2w8)#1 ln@12e2 i (w2w8)#%52

D

2
lnU4 sin2

w2w8

2 U52D ln
uxW2xW8u

R0
. ~D6!

Whenw→w8, we then introduce an ultraviolet cutoffR0 /a in the sum

^Q2~w!&05D (
k51

R0 /a
1

k
5D ln

R0

a
. ~D7!

Evaluation of^exp@i(iqiQ(wi)#&0 is best illustrated with

^ei [Q(w1)2Q(w2)]&05 (
m150

(
m250

1

m1!m2!
^@ iQ~w1!#m1@2 iQ~w2!#m2&0 . ~D8!

We will apply Wick’s theorem to compute the above average. We first note that the average vanishes whenm11m2 is odd.
When bothm1 andm2 are even, we have

^@ iQ~w1!#m1@2 iQ~w2!#m2&05m1!m2! (
l even

^Q~w1!Q~w2!&0
l

l !

^2Q2~w1!&0
~m12 l !/2

S m12 l

2 D !2 ~m12 l !/2

^2Q2~w2!&0
~m22 l !/2

S m22 l

2 D !2 ~m22 l !/2

5~2n1!! ~2n2!! (
n050

^Q~w1!Q~w2!&0
2n0

~2n0!!

^2Q2~w1!&0
n12n0

~n12n0!!2n12n0

^2Q2~w2!&0
n22n0

~n22n0!!2n22n0
, ~D9!

wherem152n1 , m252n2, and l 52n0. Similarly we can obtained for the cases where bothm1 andm2 are odd as below,

^@ iQ~w1!#m1@2 iQ~w2!#m2&05~2n111!! ~2n211!! (
n050

^Q~w1!Q~w2!&0
2n011

~2n011!!

^2Q2~w1!&0
n12n0

~n12n0!!2n12n0

^2Q2~w2!&0
n22n0

~n22n0!!2n22n0
,

~D10!

wherem152n111, m252n211, andl 52n011. Combining these contributions in Eq.~D8!, we get

^ei [Q(w1)2Q(w2)]&05 (
n050

(
n150

(
n250

^Q~w1!Q~w2!&0
n0

n0!

^2Q2~w1!&0
n1

n1!2n1

^2Q2~w2!&0
n2

n2!2n2

5e^Q(w1)Q(w2)&0e2^Q(w1)Q(w2)&0/2e2^Q(w1)Q(w2)&0/25e2[Q(w1)2Q(w2)] 2/2. ~D11!

Although more tedious enumerations of the combinations of the correlation functions must be carried out in order to
^exp@i(iqiQ(wi)#&0, the same principle applies.
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It can be observed in this simple case that the contribution in the partition function Eq.~7.2! of

^ei [Q(w1)1Q(w2)]&05e2^Q(w1)Q(w2)&0e2^Q(w1)Q(w2)&0/2e2^Q(w1)Q(w2)&0/25e22D ln(R0 /a)e2D ln(xW2xW8/a) ~D12!

is approximately a factore22D ln(R0 /a) smaller than that of

^ei [Q(w1)2Q(w2)]&05eD ln(xW2xW8)/a. ~D13!
k,

m

v

r

ev.

a
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