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Theory of monolayers with boundaries: Exact results and perturbative analysis
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Domains and bubbles in tilted phases of Langmuir monolayers contain a class of textures known as boo-
jums. The boundaries of such domains and bubbles may display either cusplike features or indentations. We
derive analytic expressions for the textures within domains and surrounding bubbles, and for the shapes of the
boundaries of these regions. The derivation is perturbative in the deviation of the bounding curve from a circle.
This method is not expected to be accurate when the boundary suffers large distortions, but it does provide
important clues with regard to the influence of various energetic terms on the order-parameter texture and the
shape of the domain or bubble bounding curve. We also look into the effects of thermal fluctuations, which
include a sample-size-dependent effective line tengi®h063-651X99)01309-4

PACS numbeps): 68.10.Cr, 68.18tp, 68.55.Ln, 68.60:p

[. INTRODUCTION ing from the competition between the bulk energy and the
line tension.

Monolayers of insoluble surfactant molecules confined to Simultaneous determination of the texture and the bound-
the air/water interface possess complex phase strudtlifes ary of the domain poses a calculational challenge. Earlier
In the “tilted” phases, the long axes of the surfactant mol-studies include the exact result discovered by Rudnick and
ecules in the monolayer are uniformly tilted with respect toBruinsma for a domain with isotropic elastic energy and only
the normal and the molecular tilt azimuth organizes spontathe first anisotropic contribution in the Fourier expansion of
neously on macroscopic length scales. The structuredie line tensiono(¢) [9], and the perturbation about the
adopted by the molecular tilt azimuth are referred taeas ~ €xact result in terms of coefficient of the second anisotropic
tures There is no long-range order of the tilt azimuth in theterm in the expansiof9]. Galatola and Fournier have ap-
liquid expanded I(E) and the gaseou€G) phases. Tilted proa_ched t_he pro_blem of domz?uns with e_Iast|C|ty and I|ne_-
phases can coexist with theE andG (isotropio phases and tension anisotropies by searchmg numencally_for.the equi-
form micron-sized domains. Alternatively, bubbles of an iso-Prium domain shapes and positions of domains in a fixed
tropic phase may appear against a background of a tiIteHB.xture backgroun@;O]. R'V"’?‘fe _and Meunler[é}] have at-
phase. Nontrivial textures in the domains, and around th fibuted their expe_nmen_tal flndln_gs on domain shapes an_d
bubbles, have been observed in thell E andL,/G coex- extures to elasticity anisotropy in the same manner as in

ist . here t h : ¢ the tilted bh Ref.[10]. In the work of Fanget al.[5], nontrivial boundary
IStence region, where He, phase is one orthe tited phases. shapes for both domains and bubbles, as well as the “inverse
Boojum textures, similar to those seen in superfltiite [2]

X o 2= : boojum” textures in the_, phase surrounding the bubbles,
and smectid- (Sm1) droplets in liquid-crystal films[3],  haye been reported. A brief account of the theoretical under-

have been observed in the interior bj domains[4]. An  gianding of the bubbles has also been presented in[&ef.
“inverse boojum,” which is the texture around the bubble |n this work, we extend the effort of Rudnick and Bruin-
analogous to the boojum in the case of the domain, has be&fina[9] to analyze the problem of domains with anisotropic
identified[5]. The domains and bubbles associated with booelastic energy in addition to the line-tension anisotropy. We
jums are not circular. Among the nontrivial domain shapesalso generalize the approach to the problem of bubbles and
seen are protrusions on both bubbles and domains, at timg@sovide a detailed derivation of the results that have been
sharp enough to be characterized as “cusp4,5] and in-  published in Ref[5]. Careful analysis reveals that although
dentations in domain boundaries which impart a cardioid approtrusions can be expected to form on the boundary of a
pearance to the domaif6,7]. Such domains and bubbles domain of theL, phase, a “cusp” in the form of a discon-
with unusual textures and shapes ought to be observable tinuity in the slope of the bounding curve surrounding the
other tilted phases as well. domain will not appear in the parameter regime that is ap-
The above textures can be understood in terms of corpropriate to the analysis that has been carried[61i0,5.
tinuum elastic theories of smectic liquid crystdB®]. The  The conclusion in Ref[9] that a cusp exists is due to an
bulk energy is controlled by elastic moduli that quantify the approximation[12] that affects the qualitative results of the
energy cost of bend and splay distortions. There are alsanalysis. The fact that the cusp does not exist and the condi-
contributions to the boundary energy, known as the line tention for the existence of cusps on the boundary were first
sion, that depend on the relative angle between the boundapointed out by Galatola and FourniglQ]. A formal deriva-
normal and the tilt azimuth. In equilibrium, the texture in ation of the conditions for the appearance of a cusp will be
domain or surrounding a bubble, and the shape of the boungbrovided in this paper. Perturbative results, which yield the
ary between condensed and expanded regions, adjust so asftects of small anisotropies on the textures and boundaries,
minimize the total energy of the monolayer. Domains withare obtained. The reliability of the perturbative approach
nontrivial textures and shapes represent the compromise arighen the boundary is significantly different from a circle is
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not obvious. Nevertheless, one is provided with useful in-

sights with regard to the influence of various contributions to

the energy of the Langmuir monolayer. In addition, we ex-

amine the effect of thermal fluctuations. We are led to a
renormalized line tension that depends on the radius of the
boundary{11].

We have also implemented a numerical program using
finite element methods for evaluation of the equilibrium tex-
ture and boundary simultaneously. With the use of this ap-
proach, we are able to explore regions of the parameter space
that are not accessible to the perturbative technique. A brief
report on the numerical work has already appedds]. A
full description of this method and a systematic review of the
results of its implementation are deferred to a future article.

The organization of this paper is as follows. In Sec. I, we
describe the approach in general. In Sec. Ill, we summarize
the exact analytic results. Section IV displays the perturba-
tive analysis of the relation between the texture and the
boundary. Sections V and VI describe the analysis for the
cases of domains and bubbles that results from perturbing
about the exact solutions. In Sec. VII, we analyze the effect FiG. 1. The geometry of the calculations fay domains andb)
Of thermal ﬂUCtUationS. ConCIUding remarks are Contained irbubb|es in p|ane_p0|ar coordinates where the bounﬂaia/param_

Sec. VIIL. etrized byp(¢). The gray area is the bulk designated®y n and
t are the outward normal and the tangent, respectiv@lyis the

Il. THE APPROACH angle between the director and thex axis and® is the angle

We describe the monolayer by an ordered phase Witﬁ)etween the outward normal of the boundary andxlais.

XY-like order parametec(x,y) =x cos®(x,y)+y sin®(x,y),

a two-dimensional unit vector indicating the direction of the
projection onto the substrate of the tilted hydrophobic tail of
the surfactant forming the Langmuir monolayer. The quan«®s[1—bcos29—0)]+«kbO,sin2A(I—-0)—c'(I-0)

tity, @(x,y), is the angle that(x,y) makes with thex axis. =0 (2.5
When a regior() contains an ordered phase which is invari-
ant under in-plane reflection, the free energy of the system

in Q and

takes the general forifg] alongI', where®,=n-V®, 0,=t-V0O, n andt are, re-
spectively, the outward normal and tangential vectors, and

H[G)(x,y)]zfﬂ?-(bdAnL fﬁra(z‘}—@(x,y))ds, (2.9 Kot Ky

K= , (2.6)
2
where

Ks—K

K ~ K ~ _ s b
Ho= |V S+ VXS, (22 PR, @0

The primes attached to functions denote derivatives, e.g.,
a(p)=oo+ 2 a,cosng. (2.3  o'(¢)=do(p)/de. The extremum equation for the bound-
=t ing curvel’, implicitly in terms of ®,,, ©,, anddd/ds, is

Here,Kg andK,, are, respectively, the splay and bend elastic

moduli, and¥ is the angle between the outward normal of Hp=0'(9-0)0,—0"(§-0)8,
the boundary and the axis. The quantityry>0 is the iso- do
tropic line tension. The first integral is over the ar€h, of +[g(1§}—®)+g”(ﬁ—®)]£+)\=o, (2.9

the system, while the second is over the boundéryas
indicated. The setup of the problem in plane-polar coordi-

nates is shown in Fig. 1. whereds s the length element df traversing in the positive
Minimization of the energy leads to equations é(x,y) direction of () and\ is a Lagrange multiplier that enforces
and the bounding curvE. ©(x,y) satisfies the condition of constant enclosed area. The set of equations,
Egs.(2.4), (2.5, and(2.8), are highly nonlinear. It appears,
—V2®+b[(@xx—®yy)cos@+2®xy sin 20 in general, impossible to find general analytical solutions to

o this set of equations. However, there are full analytical solu-
T(=05+0))sin20+20,0,cosM]=0 (2.4  tions for special cases.
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IIl. EXACT SOLUTIONS

We start with the assumption of a circular boundary. We
restrict our considerations to isotropic elastic moduli, ite.,
=0. Additionally, we assume that the anisotropic line ten-
sion, as given by the expansion in E@.3), contains only
one term, in tha,=0 for all n#p. We will take a,>0.
This is because the texture wit), <0 can be trivially ob-

tained by rotating allc(x,y) simultaneously by (&

+1)w/p, wherem is an integere [0,p—1], due to the
symmetry in the line tension. In this special case, )

reduces to Laplace’s equation

V20 =0 (3.1

and Eq.(2.5 in the plane-polar coordinate system becomes

FIG. 2. Thec-director distribution and the BAM reflectance in a
domain computed fok=1, Ry=20, anda,=1.6, wherep=1 in
(@, p=2in(b), p=3in(c), andp=4 in (d).

k®,—d'(¢—0)=0, (3.2

kO, + o' (m+¢—-0)=0, (3.3

Whenp=1, the resulting texture is referred to as thao-

where Eq.(3.2) applies to the case of a domain while Eq. . ; U
(3.3 is appropriate to the case of a bubble. In two dimen_Jumtexture. It corresponds to a defect with winding number
: : +2 [15] lying a distanceRg=1/a; from the center of the

Z'g: sr,atlh:Ssolutlon to Laplace’s equation can be written "Homain. Ase— o, the virtual defect retreats to infinity. As

e—0, corresponding to a very strong anisotropic surface en-
1 ' _ ergy, or a very large domain, the virtual defect approaches
O(k,p)=—[f(ekTIe)—f(ek1#)], (3.4  the edge of the domain. However, the distance of the virtual
: singularity from the boundary of a very large domain re-
mains nonzero, approaching the limzita; ase—0.

; ; ; — aktig i
with f(z) an analytic function oz=e in the region of For the case of a bubble, instead of E8.4), we make

interest,() for our case. In the case of a circular domain of

radiusR, centered at the origin, it is shown in Appendix C use of
®(k,¢)=i—[f(e’k+"”)—f(e"‘"“’)] (3.9
1 . .
Oo(k, @) ==[fo(e"1)—fo(e '¥)], (3.9
! as a solution to Laplace’s equation. We find that
1 1 —k+i —k—i
fo(z):EIn(l—apzp), (3.6 @i(k,(p)=i—[f0(e ?)—fo(e ]+m, (3.9
apRE=—€e+ 1+ €, (3.7

a—z=—6+ 1+ €, (3.10
satisfy Eq.(3.2. We have defined here a dimensionless pa- Ro
rameter e= x/(payRy). Figure 2 illustrates such solutions
for p=1, 2, 3, and 4. Also displayed in the figure on the 0.5 1 1.5 2 2.5 3 P

background of each plot is a simulation of the image that

would be obtained by Brewster angle microcoBAM). 0.5
The BAM reflectance depends on the exact experimental
setup and the properties of the monolayer. A detailed discus- 1
sion on the computation of the BAM reflectance can be

found in Ref.[14]. In the case of all simulated images pre- 1.5
sented in Fig. 2 and elsewhere in this paper, the Brewster
angle is taken to be that of wat€rg=53.12°, the angle of -2
the analyzera is equal to 90°, the thickness of the mono-

layer is assumed to bd=0.3 nm, the tiltW is 30°, the -2.5
dielectric constants of the monolayer a¢g=2.31 ande @0

=2.53, and it is assumed that the wavelength of the light

=514 nm. Figure 3 shows the order-parameter distribution FIG. 3. The order-parameter distribution along the boundary
along the boundary for the solution fpe=1. The plot of the  shown as a plot 08, versuse, whereg is the polar angle in the
order-parameter distribution along the boundary is an effecplane-polar coordinates. The parameters arel, Ro=20, and
tive way to examine the texture quantitatively. a;=1.6.
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Q

FIG. 5. The geometry of the calculations for domains and
bubbles in Cartesian coordinates. The gray area is the bulk desig-
nated by(). n andt are the outward normal and the tangent, re-
spectively.® is the angle made between thedirector and thex
axis andd is the angle made by the outward normal of the bound-
ary and thex axis.

nonlinear second-order differential equation, and there is no
indication that an analytic solution is possible. However, for
the specific case of domain in whith=0 anda,,.;=0 ex-
ceptay, it can be verified that a circular boundary centered at
the origin is indeed a solution. Furthermore, such a texture-
satisfy Eq.(3.3) in the case of a circular bubble of radigg ~ PUndary combination has been sho] to be a locally
stable configuration. Interestingly, a circular boundary with

centered at the origir®; is shown in Fig. 4 fop=1, 2, 3, : . . . .
and 4. Also shown in the background of each plot is theln€ inverse boojum texture fails to satisty H.11) in the

intensity distribution that would be recorded in a BAM jm- Case of a bubble.
age.
Whenp=1, 0, in Eq. (3.9 can be characterized as an IV. TEXTURE AND BOUNDARY SHAPE
inverse boojum texture, in that it is obtained by replading . . . . .
In this section, we assume that the virtual boojum singu-

by —k in ®4. This corresponds to a defect with winding , .= ;

number— 2 located at a distand@s = ar; from the center of larity lies cl_ose to the bou_ndary between a domain or bubble

the bubble. Whene=, the defect is at the origin. As gnd th? nelgh_bormg _medlum, and we foc_us on t_he bom_mdary

—0, it moves towards the edge of the bubble and approach q the immediate nelghborh_ood of the ?'F‘g.“'.a”ty- This _aI—

a distancex/a,, from the boundary. ows us to tregt the two regions as seml-mfmlte. The aniso-
éroplc phase is taken to occuggpproximately the half-

Note that in the above discussion the domain and th Lo . .
bubble have beeassumedo be circular. There is na priori §pace_for W.h'Ch.( Is negative. The setup of the computation
depicted in Fig. 5. We first fix the boundary to lie along

assurance that this shape minimizes the energy of the system. . . . ) :
As the next step, we determine the equilibrium shape ofhey axis. We then determine the texture in the anisotropic
y phase wherb=0 and all thea,’'s excepta,; are equal to

the domain or bubble. Rewriting asp(¢)=eX(¥), that is, in ; ;
: g zero. The order-parameter fiet@(x,y) will be of the form
polar coordinates, we transform E@.8) into displayed in Eq(3.4), satisfying the boundary condition

FIG. 4. Thec-director distribution and the BAM reflectance for
bubble computed fok=1, Ry=20, a,=1.6, wherep=1 in (a),
p=2 in(b), p=3 in(c), andp=4 in (d).

+Hpe ! —0'(9-0)0,—d"(9-0)0, [xkOx+a,sin(—0)]—o=0. 4.1
This boundary condition is satisfied by the following expres-
+[o'(9-0)0 ,— 0" (3-0)0, ]k’ sion:
kl! 1
Tlo(@=O)+ (90| 1= — Oco(x.y)= T [fo(x+iy)—fo(x—iy)], (4.2
1+k
1 wherefy(z) is as given in Eq(3.6) anda=a;/«. This tex-
X———=+\=0, (3.1) ture in fact corresponds to that of a domain in polar coordi-
\ /1+ K'2 nates. Inspection of the boundary condition Egl) leads us
to another solutior® ;= — 0o, which corresponds to the
where texture of a bubble in cylindrical geometry. Figureggs)éand
6(b) show the distributions of the order parameter and the
o—tan Kk’ for domains computed BAM image in this geometry for the domain and
= 7+eo—tan 'k’ for bubbles. (312 the bubble, respectively. The correspondence betvien

and O, for the case of domains can be observed in Fig) 6

In Eq. (3.11), + applies in the case of a domain whiteis  in that the ¢ directors tend to point towards each other
appropriate to the case of a bubble. EquatiBrll is a around thex axis. Figure €b) corresponds to Fig.(4) for the
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f(z)~fo(2)+ &(2)fo(2). (4.9
Both 7(y), the deviation of the boundary from the straight

line x=0, and{(z) in Eq. (4.6) are small quantities. They
possess the following properties:

7(X)=n(=X), (4.7)

E(z)=¢&"(Z"). (4.9

FIG. 6. The order-parameter distribution and the BAM reflec--l—he boundary condition can then be expressed as
tance when the boundarly is a straight line fork=1 and a;

=1.6, where(a) shows®, for the case of a domain whilé) (

a 9 J
showsO; for the case of a bubble. K| —+np—— 19_) ® +a,sin(9—0)|,— ~0,

case of bubbles in that theedirectors fan out in the direction X0 (4.9

of the outward normal of the boundary near thexis.

To investigate the equilibrium condition for the boundary where &~ — 7’. To first order in»,& and their derivatives,
I', we parametrizd” in Cartesian coordinates by= 7(y). we obtain the following equations:
The equilibrium condition fol™ can then be written as

2aye'(ly)  2a%y7(y)

K 70,-0, do = + 9, (4.10
E|V®|2+a’(ﬁ—®)%+d—a”(ﬂ—@) 1+ a?y? 1+ a?y?
1+77! 77!

, \/7,2 . where + corresponds to the case of domain andcorre-
X(Oyt 7' O)N1+7"" —[0(I=0)+0"(9-0)]  gponds to the case of bubbles. The relation betwgeand £

" is readily derived:

. 1+ ,23+)\:O, (43) iv1+ 2,12 2 2\, ( /)
Vit 7y : yl+ay a’y nly ,
§(|y):f oy | 1ty tﬁ]dy.
and for the boundary condition §t=0 0 cay taty
(4.1)
do o’ () T . . .
7'=—(1+7'? , (4.4  Here, we distinguish the primes attached to functions which
dn’ a(9) denote derivatives and those attached to variables within the

integrals which indicate that they are variables of integration.

whered=—tan 7’ is the angle between the outward nor- primes will be used in this fashion from now on. The func-
mal n of T' and thex axis. tion ¢ obtained from Eq(4.1)) is defined along thg axis.

A cusplike singularity occurs when'(0)#0. As aresult  We now analytically continug to the entirex-y plane. Up to
of the symmetry of the problemy(—y)=7%(y) and this point, we have expressed the distortion of the texture in
7' (—y)=—7'(y). The possible values af’'(0) can be ob- terms of a fixed boundary deviation from the exact solution
tained by solving Eq(4.4). That ' (0)=0 is a solution fol-  given in the beginning of the section. To examine the solu-
lows from the fact thair’(0)=0. In order that a nonzero tion Eqg.(4.11), it is necessary to determine the textural de-
7' (0) solves Eq.(4.4), the slope of the right-hand side of formation associated witly(y) = 7, for domain. We find
Eq. (4.4 at the origin must be greater than unity, or

£(2)=—anoz. (4.12
d dﬁ(1+ ,2)0’(0) L “5
—|— —_— =1, ) ;
dy' | d7y’ K o The resulting texture
. . 1
which leads us to the cusp conditie(0) [o(0)+¢"(0)] @(x,y)mi_[fo(x_ no+iy) — fo(Xx—1mo—iy)] (4.13

=<0. We will exclude such a condition from our discussion,
as it requires eithefa,|=o, or 3a,=o0,. Such conditions ) ) ) )
are incompatible with the parameter regime on which weS identical to the domain texture given in E@.2) except

focus. that the position of the virtual defect is translated by an
It can be shown that=0 or they axis is a solution to Eq. @mountzy in the positivex direction.
(4.3 when @, is used as the texturdor the case of do- Under a small boundary distortion= 7(y) away from

main) while this is not so for the case of the bubble, or whenthey axis, the functiorf(z) given in Eq.(4.6) and its deriva-
the texture i ¢; . We continue to investigate perturbatively tive are approximated as
the response to the texture when the boundary deviates

slightly from x=0. Let the texture@®(x,y), be of the form e ad(y)
of Eq. (3.4) with f+iy)=In(1=iay)= 7770, (4.14
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Fntiv) @ al'(iy) o[ g+ &(iy)] f(z)=fo(2)+11(2). (5.3
"(ptiy)=—7——— — — - ,
1=lay 1-lay  (1+iay)? It can be shown that Eq2.4) is satisfied even witH;(2)
(4.19  =0. We continue to investigate the boundary condition of

the texture assuming that the bounding curve is a circle of

where{(iy) is given in Eq.(4.10. When these expressions radiusRy. Equation(2.5) requires a nonzerb,(z) satisfying

are substituted into Ed4.3), we obtain, for® =0 -, which

corresponds to the case of domain, , BN -t z—a l-az
k[zf(z2)—z"f1(z )]"‘7 "1—az 7z-a f1(2)
. 20a L
n= 1+ a? 2[a7]+§ (iy)], (4.16 z—a l1l-az kba 1-az
y + + fo(z*) |+
1-az Z—«a RO Z(l—az*)z
while, for ®=0¢;, which corresponds to the case of
bubbles, z(l—az*)] ( -« )2 (1—az)2
(11— a2)? A \1—az] | z- -
,_ J4a(l-a®y?) 2a%(3-10a%y*+3a%y") (1=az) ¢ “
- (1+ a2y?)?2 (1+a?y?)? (5.2
- 5 o 5 o In contrast to the notation used in Ed8.6) and (3.7), we
N 8ia’y(3—a’y”) (iy)+20‘(3_0‘ y )5’(iy) have redefined=e'¢ and absorbe®, into a=R,a;. Equa-
(1+a?y?)® (1+ a?y?)? ' tion (5.2) can be separated into two equations:

(4.17)

where d=a; /oy. We can see that the right-hand side of the

Z—a l—az

1
Zfl(z)_z 1—az " Z_a)fl(z)

equation for the distorting effect of the texture appropriate to 7—a vl z—a\?
a domain, i.e., Eq4.16), starts at first order iy while the =ba 5~ —( ) (5.3
corresponding equation, E@4.17), for a bubble starts at z(1-az)? €\l-az

zeroth order inyn. This provides further confirmation that

there is no simple inversion symmetry between the domailfflnd, an |d§ntlcal equation with replaped by its complex
and bubble. conjugatez* . Each of these equations is solvable by standard

methods. One finds

V. DOMAINS f.2) y z—a eba—2y) (z—a)
z)= -
We have established that the boojum texture together with ' alate) 1-az ate l-az

a circular boundary is an_exact solution for the case in which X ,Fi(Laletlialet2:—az), (5.4)

b=0 and onlya;#0. This leads us to the conclusion that

nonzerob and/or higher harmonics in the expansion B43)  where ,F,; (v, u; u+1;2) is a hypergeometric functiofi7].

must be present if the boundary is to be noncircular. We nowyjith f,(z) included, ®(x,y) now satisfies Eq(2.4) up to

attempt to analyze the situation in whiah, a,, andb are all  first order iny andb.

nonzero. We do this by perturbing about the boojum solution  The full analytical solution of Eq(3.11) is difficult when

in terms of small parametetsand y, wherey=a,/a;. y andb are both nonzero. However, one can attempt a solu-
We note here that the sign af does not affect any of the ' tijon as an expansion in the small parameters, k, andk’.

following analysis. As has been mentioned in Sec. IQis  we recall the definition ofp(¢)=e"?)~1+k(¢). If one

an equilibrium texture fora;>0, then® =0+, repre-  ignores terms beyond first order in these quantities, it is pos-

senting a reflection of the directors about the axis, will be  sible to solve for the bounding curv€, analytically. The

the corresponding texture farp <0. The equilibrium bound- algebraic manipulations are dramatically simplified if we fur-

ary is circular in both cases. Furthermore, contributionb of ther approximate®,~0,/R, and ©~0,/R,, which is

and a, appear in the form 0®,e'?®, which is invariant equivalent to neglecting the first-order contributions of

under reflection of the directors about the axis. ®, rep-  K'(¢). The error of the analysis is then of ordeiO(5k”),

resents derivatives @ with respect to the variablewhich ~ Whereé=a, /o, which has been defined earlier in Sec. IV.

can bex, y, or any linear combination of the two. Hence, the The equation for the boundaiy,

effect of a, and b is independent of the sign @f;. In the , ”

upcoming discussions, we will assunag>0 for conve- HpRot{=0"(¢=0)0=0"(¢=0)0,

nience. The inequality>0 refers to the case in which tloe +o(e—=0)+d"(¢—0)](1-K")}+N=0, (5.H

directors along the boundary prefer to lie tangent to it while

y<0 applies when the directors prefer to point along the

normal to the boundary+n. Whenb>0, bend textures are K'(¢)=K](¢)+K(0)+K;(@), (5.6)

preferred; splay is preferred whér<O.

We first find the textural response foandb by making  wherek” has been separated into various components, as
use of Eq.(3.4) with shown below, for convenience,

can then be reduced to
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Sba’(—z+a+te)

Ki(p)= +c.c., (5.
1(®) (1-az)? 7)
Vo= s z 3 3 1\/z-a)?
2(@)= ay l—aZ+ Z—a+z ez/\1—az
+c.c., (5.8
_s z 1 [z« 1-az ¢
3le)= al az Z—a 2ez 1—aZ+ ZI—«a 1(2)
+c.c. (5.9

ki(¢) consists of terms that depend bnk,(¢) contains
terms that depend of, andks(¢) has terms that depend on
both b and y through the textural correctiofy given in Eq.
(5.4). The functions’ (¢) andk(¢) can then be obtained by
integrating Eq.(5.6) with respect top. They are

k/ _ 5ba2 In(1 1—a’2—a6
1((10)_ | _(€+af) n( —aZ)'f'm —C.C.,
(5.10
, Say|[1 3a®> 1-a*
kz(‘P):_i— a2 T In(1—az)
1 3a 1-a?|1-a® (1-a??
—— +
20 2 € Jaz—=1 2q4(az—1)?
—c.c., (5.11

oa

2y
k3(@)=— T (ba— F)g(az)—c.c., (5.12
where

!

z.

(5.13

9(2)=—

!

€ fZZFl(l,a/e+1;a/e+2;—z’)d
ate

z

One more integration yields

ki(@)= ba? (6—%-}—a)|n(1—aZ)—(€+a)Li2(aZ)
+c.c., (5.149
Sy 2 3a° 1-a% .
s B P
_2\2
+ —a(l—a2)+Mln(l—az)
(1-a®)?
—m +c.c., (5.15

Sa 2y
k3(<p)=—?(ba—7) h(az)+c.c., (5.19

where
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FIG. 7. (a) Plot of K"(¢), k' (¢), andk(¢) for k=1, Ry=5,
o9=4, a;=1.6, anda,=0.5. (b) The corresponding domain shape
I' parametrized ap(¢)~1+k(¢p).

h(z)= ng(z')/z'dz’ (5.17

and Li(2) is the polylogarithmic function defined as

* k
Lin(x)=k21 % (5.18

Numerical integrations can be utilized for the evaluation of
k(¢). However, as we can see from the following:

JZ Z'a/s iy eza/EJrl
zZ =—
01— az’ ate

the integrand oscillates strongly age— as a result of the
factor z “’¢and numerical integrations become inefficient.
Further observation reveals th@tz) andh(z) can be evalu-
ated analytically ifa/e=n is an integer. Equatior5.19
simplifies as follows:

Fi(lalet+lale+2;,—az),
(5.19
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(a) (b)
(c) @
© (H

FIG. 8. Domain shapes computed for1, Ry=5, 0g=4, a,;
=1.6, and(a) a,=-0.5, (b) a,=—-0.3, (c) a,=-0.1, (d) a,
=0.1,(e) a,=0.3, and(f) a,=0.5.

'

z z"n & (e2)
J dZ/=—a "D ——+In(1-a2)
0l—az' i=1 |

(5.20
When the above simplification is substituted into Egj13),

(2) (b)

FIG. 9. Domain shapes computed fer=1, oy=4, a;=1.6,
a,=0.6, and (@ Ry=0.2,0.25,0.33,05,1 and(b) R,
=2,2.5,3.3,5,10.

mains appear slightly flattened and elongateg#0. This is
in accord with the intuitive notion that the second-harmonic
term in the line tension becomes important as the variation in
the texture vanishes, i.e., in the limit that the order parameter
is uniform. As the domain gets larger, the boojum singularity
moves closer to the edge of the domain and the boundary
correction moves towards the axis connecting the center of
the domain and the boojum. Cusplike features start to appear
when the domain is larger than a “threshold” sizg;=1
for the domains in Fig. 9. We note that we have used large
values ofy=0.3 to illustrate the nontrivial boundary that we
have obtained for the domains. It has been numerically veri-
fied [13] that the qualitative behavior of the boundary re-
sponse is indeed preserved up to much larger values of

It has been shown in Sec. IV that the boundaries of the

the integration can be performed and yields the analytic fornflomains are strictly smooth and continuous in the parameter

of g(2):
n
1 111 In(l-2) 1
9(2)‘21 ThoKtL ntlek  ntl |t el
(5.21

h(z) can be evaluated analytically in the same manner an
we get

" i 1 1 1

h = _— i
2 g‘l(n—kﬂ)kzzk 2 (n+1)2k+(n+1)k2Lk
In(1-2) In(1-2) B Li,y(2) (5.22

(n+1)%2""1 (n+1)2 n+l’

The boundary of the domak( ¢) =Ej3:1kj(go) is smooth
and has continuous derivatives. Typiddle), k'(¢), and
k”(¢)’s are shown in Fig. (&). The corresponding boundary
I' parametrized by (¢)=1+k(¢) is depicted in Fig. ).
We have thus arrived at an approximate expression'fas
a function of the line-tension anisotropy coefficienand the
elastic anisotropy coefficientb. This expression is useful
when we are interested in the responsé'dbr small values
of the these anisotropic parameters.

We first examine the boundary responseytahile keep-
ing b=0. We find indentations and protruding features on
the domain boundary foy<0 andy>0, respectively. The
progressive change of the boundary response wagn
changes from-0.5 to 0.5 is illustrated in Fig. 8. The results

regime upon which we focus. We are, however, able to find
domains with cusplike features in the context of the pertur-
bative analysis described in this paper. Such domains can be
characterized by aexcluded angléel, defined in Fig. 1(g).
Domains with boundaries that resemble those with cusplike
features are observed experimentally. The domain-size de-
gendence of¥, is shown in Fig. 1(b) [5]. There is no
rigorous mathematical definition o'y for a continuous
boundary. It is, nevertheless, possible to devise a systematic
way of identifying such an excluded angle for a smooth
boundary. One first evaluatds= — 2 tan *dx/dy along the
boundary. The value off at the straightest part of the
boundary, which is indicated ty?x/dy?>—0, is a likely can-
didate forW,. Figures 11a) and 11b) show the plot of¥
andd?x/dy? versuse, respectively. The values oF in the
plateau region in Fig. 1&) represent the range in which the
measured excluded angles are likely to fall. These values of
V¥ are found in the region near the axis of the plot of¥

, Ro(um

1 0.8

(a) (b)
éﬁ 120 iﬁﬁ%%gg
=

40 ]

X
0.025 0.25 0.50 0.75 1.00 1.2%

1/Ry (1/ um)

are in qualitative agreement with those presented in Ref.
[10]. We have also examined the dependence of the bound- F|G. 10. (a) The definition of the excluded angt,. (b) Ex-

ary at fixedy on domain sizeR,. Figure 9 show boundaries
for domains of sizesky=0.2 to 10. WhenR,<1, the do-

perimental measurements of the domain-size dependenkg ob-
served inL, domains surrounded by LE phase taken from IRef.
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FIG. 11. (8 Plot of ¥=—2 tan *dx/dy versuse for k=1,
Ro=5, 0p=4, a,=1.6, anda,=0.6. (b) Plot of d®x/dy? versuse
for the same parametdc) Plot of W versusd?x/dy?. (d) Plot of &
versusl=l,exd — (d?x/dy?)?]. (e) Density plot of| as¥ for a
singleR,. (f) The dark line marks the maximuig,,, of | while the
gray region shows the range ®f in which I >1,,/2.

versusd?x/dy? shown in Fig. 11c). A plot of ¥ versusl
=1, exf —(d>x/dy?)?], as shown in Fig. 1), highlights the
range of the values o¥ that is most likely to contain the
measured excluded angle. Figure@ldisplaysl as the in-

tensity (inverted, in that the brightest corresponds to the

smallest value of). Figure 11f) shows the value ofV at
which | =1, by the dark line and the region in whidh
> a2, or the full width at half maximuntFWHM), by the
gray band. Figures 1&) and 11f) are useful for describing

the selection process by which one is led to the most likely  0.01

values of the excluded angle. Figuregd?2and 12b) illus-

trate such plots. The experimental result is superposed in Fig.

eye fit. The values of the parameters af@,=4 um, &

(a) (b) Ry (um)
40 4 2 1.3 al 0. 4 2 1.3 1 0.8
160
140
B0 120
—io)/ 100 ﬁﬁ%ﬁgi
80
> 60 %g
40 §
* _ [

0.025 0.25 0.50 0.75 1.00 1.25 0.25 0.50 0.75 1.00 1.25

1/R ¢ (1/m)

FIG. 12. (a) Density plot ofl as a function o andR,. (b) Plot
of | haxand the region in which>1,,,/2 as a function of andR,,.
Superimposed are the experimental data shown in Fig) Mith
parameterk/a;=4 um, 6=0.4, andy=0.5.

tures, namely the onset and the maximum of the domain-size
dependence of the excluded angle. As displayed in Fig.
12(b), the maximum and the onset &, are quantitatively
different in the perturbative analysis and in the experimental
data in the intermediat®, regime. In particular, the experi-
mental maximun ofl; cannot be obtained from the analysis
even thoughy=0.5 has been used. We shall defer the dis-
cussion on this to the end of this section after elaborating on
the effect of the elastic anisotrody We also note thaty
=0.5 is very large as a perturbative parameter. Although
there is naa priori guarantee of the accuracy of the results, it
is evident from our numerical studig€s3] that the qualitative
behavior of the boundary as a function of the domain size is
preserved in the perturbative analysis up to at leasD.5.

We now proceed to examine the effectoén the bound-
ary I'. The coefficient of the anisotropic line tensignis
kept at zero and the boundary response is proportionil to
Figure 13 shows the plot &f( ¢)/b. In contrast to the results
obtained by Galatola and FournigtQ], the boundary ac-
quires a denting correction whdn< 0, indicated by a maxi-
mum in k(¢)/b at ¢=0. This perturbative result is con-
firmed for small values ofb (=0.1) by our numerical
studieq 18]. At such small values df, the boundary is prac-
tically circular. We shall restrict our discussion to the effect
onI' of small values ob, in that higher-order corrections of
b, which are not taken into account in this first-order pertur-
bative analysis, change the qualitative behavior of the bound-

0.03 k(go)

0.02

12(b). The parameters are adjusted in order to obtain a by- \/
-0.01

=0.4, andy=0.5

The perturbative analysis generates results that are in FIG. 13. Plot ofk(¢)/b for k=1, Ry=5, 0y=4, a;=1.6, and

good agreement with experimental observatididor large

a,=0. The maximum ok(¢) at ¢=0 implies a protruding correc-

domains. It has also captured qualitatively the essential feaion whenb>0.
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ary response, as reflected by our numerical studigk (a) (b)

As for the role ofb in the interpretation of the experimen-
tal observations, we conclude in our numerical studliey
that a nonzero value dif cannot be solely responsible for the
protruding features, and hence the excluded-angle measure-
ments. Large values oj~0.5 are required to produce ex-
cluded a_ngles whose maximum approaches the Iarge_s_t value FIG. 14. Bubble shapes computed fa=0.16, oo=1, a
of experimentally measured excluded angles. At _sufﬁmentlyzollsy and@ R,=1,2,3.4,5,6,8 andb) Ry=8,20,40.
large values ofy, we have found that the behavior of the
excluded angle is qualitatively unchanged when the aniso
ropy parameteb is varied from—0.5 to 0.5. Although the
validity of the perturbative analysis bt>0.1 is questionable,
the relative magnitude of the correction to the boundarly of

is much smaller than that of. This is further verified b
of y condition for the boundary™ Eq. (3.11), one finds that a

numerical studie$18]. ) ; .
We have thus demonstrated, within our first-order perturCircular boundary does not satisfy the equation. By perturb-

bative analysis, that the line-tension anisotropyan give ing about the circ_ular boundary in terr.ns.ofasmall parameter
fise to the indentations and protruding features of the domaifi— 21/, We arrive at an equation similar to EG.6),
boundaries that have been experimentally obsefvédOur
results on the boundary response yoare in qualitative
agreement with prior resulf40,13. Although our investiga-
tion of theb dependence of the boundary does not provide us
with dgpendable results for large yalu.esboit.supports the Again—see Eqs(3.9 and (3.10—we have redefined:
Es?ertlt?[n tgat ttt\e t%xtural correctlonFls ;}n |mpor|tarjt cc;ng:-z e'¢ and a=«, /R,. Following the same procedure as for
ution to the boundary response. Further analysis o : :
available experimentalr)(/:lata gn the excluded ang)I/es leads 'flge case of a domain, we find ff (¢) andk(¢)
the conclusion thal has little effect on the boundary of the

tél. The inverse boojum textui®; given in Eq.(3.9) and Eq.
(3.10 satisfies the equilibrium condition for a circular
bubble for the case in which the directors favor pointing
into the bulk ora;>0. Substituting®; into the equilibrium

2

A
K'(¢)=—2a’8e——+c.C. (6.1
(¢) (1= a2)?

: i . . . 26 1
domains with protrusions. We shall confine our conclusions K'()=—— +In(1-az)|—-cc., (6.2
to small values ofb|<0.1, although large values &f~0.8 I [1-az
do lead to interesting domain shapes. Discussions of the do-
main boundaries at large values lofwill be presented in a k(o)=—28¢[In(1—az)+Liy(az)]+c.c. (6.3
forthcoming article[18], and some of the results have been
briefly presented in Ref13]. It should be kept in mind that the above discussion refers to

We obtain good agreement between the results of the pethe casea,>0. The results fom; <0 arenot obtained by a
turbative analysis and the experimental observations on theimple sign reversal od, in Eq. (6.3). Appropriate changes
W, dependence on the domain radiRg in the largeR,  in the texture and definition ofe, which is given as
regime. In the intermediat®, regime, the discrepancy is not «/(]a,|R,), must be taken into account. The details of the
resolved, even in our numerical studigs8]. The mismatch  calculations are presented in Appendix C. The final bounding
could possibly be attributed to the fact that our simple elasti¢urve for the bubble depends only on the magnitiadé We
theory does not describe accurately the actual complekave derived expressions fbr for the cases where there is
monolayer. In the perturbative analysis performed in thisonly ana, contribution in the line tension.
work, the parameters are restricted to a region in which One can utilize the results to investigate the bubble-size
a(¢)+0"(¢) is always greater than zero. Furthermore, it isdependence of the boundary shapes. Figure 14 shows the
generally known that the dipolar interactions between theshapes for the bubbles of siz&=0.2 to 10. Very small
surfactant molecules in the mOﬂOlayer are important. Th%ubb|esRo<l are near]y Circu|ar, as are very small do-
current model does not take into account such interactions. H’]ains_ Cusp"ke features start to appear when the bubble is
has been discovered in a recent experimental stliflythat  |arger than a “threshold” sizeR,= 1 for the bubbles shown
the tilt is not always uniform, especially in the region aroundin Fig. 14. Similar analysis of the excluded angle to that for
a pOint defeCt. The Contl’ibution Of Variation in t||t may not the domain presented in Sec. V can be Carried out. Figure 15
be SigniﬁCant in terms of aCCOUnting for the discrepancy inshows p|ots ofr VersusRO Corresponding to those in F|g
the intermediate-sized domain regime. It does become imgo. Experimental measuremeff of the cusp angle for the
portant in the largdR, regime when the virtual singularity pypble are superposed in Fig. (b5 A by-eye fit can be
approaches the domain boundary and the texture acquirespitained with parameters/a;=0.4 um and §=0.16. We
rapid variation in the neighborhood of the virtual singularity. find fairly reasonable agreement between the theory and ex-
perimental observations. We remark that the apparent mis-
match between the theory and the experimental data point at
Ro=1 um, which has been shown to match the explicit

It has been shown in Secs. Il and IV that there is nomeasurement on the calculated bubble boundary in [Bgf.
straightforward inversion symmetry between the domainsnay be the result of the inadequacy in qualifying the ex-
and the bubbles. In contrast to the case of the domain, it isluded angle¥ for bubbles withRy<1 wm using the
not necessary to introduce anisotropic parameters other thaWWHM of | shown in Fig. 11f).

VI. BUBBLES
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(a) (b) Ry (um
40 4 2 1.3 1 o, 4 2 1.3 0 (1M o.) Z(ap)=Z(0) ex _ﬁap jg COSp((p—@)dS 0'

160 (7.2)
0 izz where(O), denotes the thermal average with respect to the
3 1o Hamiltonian without the boundary term given below,
\B_: 80 K

« A [Pooex| - 5[ aaver

40 -

20 f (O)o= Br . (7.3

; fDexp<—7f dA|V®|2)
0.025 0.25 0.50 0.75 1.00 1.25 0.25 0.50 0.75 1.00 1.25
1/R ¢ (1/um)

We denote® () =0 (R, cose,Rysing) as the values of
FIG. 15. (a) Plot of | as a function of’ andRy. (b) Plot of I, @ ON the boundary of the circular domain. The following

and the region in which>1,,.,/2 as a function of andR,. Su-  correlation function can be evaluatgti]:

perimposed are the experimental observations of gaseous bubbles in

L, phase. The experimental data have appeared in [BefThe (Op(@)Bp(¢"))o=—AIn2

parameters for the by-eye fit akda,;=0.4 um and5=0.16. ’ (7.4

o=
SIHT

: . whereA=1/27 k.
As compared to the parameters obtained for the domains 1, g\ a1yate the full partition function E€7.2), we Taylor

in Sec. V, which arec/a;=4 u m, 6=0.4, andy=0.5, the expand the exponent as
value of x/a; for the case of bubbles is an order of magni-

tude smaller than that for the case of domains. Noting thez(ap) - < 1_“[ jg ds o
L | P 5 cosp(ei=0i) ;

1
fact that the data for the bubbles are obtained atLthss 0 " > (—Bay)"—
coexistence region and those of the domains are measureg( ) =0 n
when thelL, domains are surrounded by thé& phase[5], (7.5
the comparison ofx/a; between the domains and the

bubbles is indeed in accord with the intuitive sense thaf where we have added an indexo distinguish the various

; D : cosine terms, denote@l;=0 (R, cosg; ,R,sing;) for conve-
the L, domains should not vary significantly whitg at the nience, and introduced a microscopic length seale the

L2/G interface is much larger than that at ihg/L E bound- . denominator inds to make the total integration dimension-

ary. Thed's are of the same order of magnitude and there i b it )
no corresponding in the case of bubbles. The result of thes'L:;z' c\)/]y?hgsfogﬁfe t(ee;mJ;e )/2 and then expand the prod
n 1

perturbative analysis is consistent between the domains a

the bubbles. Z(ap) B i _Bap niﬁ d_S
Z(0) =\ 2 nli=y a
VII. THERMAL FLUCTUATIONS n n
The analysis presented in the earlier sections is in the XY e“izo qi“’i<e‘i20 qi®i>0 . (7.8
mean-field approximation; thermal fluctuations are ignored. tait

In this section, we examine the effect of thermal fluctuations here we have defined charge= = p for each of the cosine
and its implications to the computation that has been carrie : -

out. The effect of fluctuations can be assessed by utilizing erm.s n Eg.(?.S) and denotecE{qi} a sum over all charge
mapping between the statistical mechanics of the orderconfigurations. The thermal average can be evaluated exactly
parameter fluctuations in th{iis system and the behavior of #Sing Wick’s theorem; we obtain the following equality:
two-dimensional Coulomb gasConsider the Hamiltonian of <n n

the form of Eq.(2.2), with bgo anda,=0 for all n#p. For <e'2i:"Qi®i>o:3_1/2<(Ei=°q‘®i)2>°- (7.7

t ith circular bound f radiip, h :
a system with cireular boundary of racii, one has The averagé®?), encountered in Eq7.7) can be evaluated

using the inverse of the microscopic length scake d4¢ the

H'[®]=H[O]-270yR,. (7.1  ultraviolet cutoff. We have the following:
0%(9))o= M (B()O(e))o=A L. (7.8
The prime here distinguishes the free energy from the one (0%(@))o= |m’( ()0(¢"))o= n=- (7.8
defined in Eq(2.1). The prime is dropped from now on for e
convenience. The partition function can be written as The contributions of the charge configurations in which

>,q;# 0 to the partition function are suppressed as a result of
excess factors of ekp (p?A/2)In(Ry/a)]. Therefore, it is nec-
We are grateful to Professors H. Saleur and P. Fendley for geressary to sum only over the configurations in which there is
erously providing us with this idea for the analysis of thermal fluc-no net charge. Finally, the full partition function can be ex-
tuations[11]. pressed as follows:
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2a) g (=B 1 gy jgﬁ 100
2(0) &\ 2 2mi-y T a 80 T-0
o~ —_— — T-0.1Txr
I — e mee T=0,3T
X 2 e*iEizgoqi(pie*A/ZEi'jqiqj In[(xiij)/a], § 60 ----- T=0.5TE:
{Zqj=0} B? 40! Y eeeesen T=0.7Tgr
(7.9 20
analogous to the expression of the partition function for a .
system of 2D neutral Coulomb gas. The charge of the par- 0.1 1 2 3 4 5
ticles is pyA/2 and the particles are distributed along the 1/R (arb. units)
circumference of the domain. Following the Coulomb gas .
treatment for the 2D phase transitiof20], we derive flow FIG. 16. Plots of¥, as a function ofR, for k=1, op=4 at
equations for the running coupling constants, T=0, 0.ITky, 0.3Tkr, 0.5Tkr, and 0.Tyr. At R;=0.2, all do-

mains have the same renormalized coefficients in the expansion of

dap(a) 3 pZA(a) the anisotropic line tension, namedy =1.6 anda,=0.6.
aT— i ay(a), (7.10
The partition function
dA(a) ) b _ _
a da =—2772A2(a)ap(a). (71]) Z(b):Z(O)<eXF{IB4Kf (®§e|2®+®§el2®)dA}> ,
0
Foray(a)<1, we have the following: (7.1
ay(a) o\ 1-p2ar 71 which leads to the flow equations similar to those dgy
“la, : db(a
2(20) 12 a d(a) — —2A(a)b(a), (7.17
The scaling relation implies the relevancy, and the irrel-
evancy transition temperature af(a) at T, is given by dA(a)
a =—27%A?%(a)b?(a), (7.18
da
S (7.13
BYp p? ' from which we deduce thdb is always irrelevant at finite

temperature.

As compared to the Kosterlitz-Thouless transition tempera- Following the same argument as for the casepf we
ture kgTyr=7k/2, T1 and T, are aboveTyr. Our result is  consider fluctuations that cut off &~R, in the ordered
analogous to the scaling index of the symmetry-breakingphase, and take the renormalized coupling constant
perturbation in the 2D planar model obtained by the spin—=b(R,). We find that theb scales a®R, 2* in a theory with
wave approximatiohi21]. fixed k. When thermal fluctuations are important, the mag-

In the low-temperature phase, we consider fluctuations upitude |b| is at its maximum €«1) for the smallesR, and
to a cutoff that is proportional to the sample sizeaerR,;,  decreases &R, increases. Thermal effects reduce the already
and consider the renormalized coupling consta insignificant boundary correction due o This reinforces

=a,(Rg)Ro. We find the scaling relation, our earlier conclusion thadt has no significant influence on
5 the domain boundary.
apvagp a2, (7.19 In summary, thermal fluctuations act to renormalize the

anisotropic parameters. The influence of thermal fluctuations
Based on a theory of fixed, the renormalized anisotropic on the boundary shape can be studied using the mean-field
line tension decreases as a power law viR§ the radius of ~ approximation with renormalized anisotropic parameters.
the boundary, with exponent p?A/2. Using this relation, The boundary correction due to elastic anisotropy, which is
we investigated the effect of thermal fluctuation on the do-negligible atT=0, further decreases as a result of thermal
main boundary. The result is depicted in the plotlofat the  fluctuations. The deviation of the boundary from a circle that
maximum ofl, ¥, as a function oR, in Fig. 16. We notice  results from line-tension anisotropy is displayed in terms of
the rounding off at the maximum oF o and the decrease in the domain-size dependence of the excluded angle in Fig.10.
the magnitude of?', with increasing temperature. The above The maximum of the excluded angle, which is higher in the
comparisons are made for domains with=0.4 and y  experimental observations than predictedratO (see Fig.

=0.38 whenR,=0.2. 12), will be reduced when thermal fluctuations are intro-
We can also look at the effect of fluctuationslmriWe let  duced. This indicates that the line-tension anisotropy of the
a,=0 for all n and the Hamiltonian becomes monolayer system under study may be very strong.
K
H[O]= Ef {[V0[2+b[(~ 07+ ©2)cos 20 VIIl. CONCLUSIONS

We have described in this paper a systematic investigation
—20,0,sin20 J}dA. (7.15  of a system of a 2D ordered medium with a boundary. Be-
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ginning with the free energy Ed2.1), which describes a ACKNOWLEDGMENTS
bounded monolayer, we have derived the Euler-Lagrange

equation_s_for the texture and the boundary. From the bounqfang, and Ellis Teer for useful discussions. We thank Pro-
ary conditions we have shown that the boundary under Congs5o: 1 saleur and Professor P. Fendley for interesting
S|deraF|pn must be smooth. A continuation of the. analysis Ndeas on the analysis of the effect of thermal fluctuations. We
the spirit of Ref[9] for the cases of both the domains and theg g thank Professor R. B. Meyer for suggestions with regard

only term in the anisotropic line tension, as given by Eq.professor Charles Knobler for enlightening discussions and
(2.3), is a; cos¢, while circular domains are not affected. for his careful reading of the manuscript.

There is, thus, no simple inversion symmetry between do-
mains and bubbles, as one would intuitively expect. Pertur-
bative calculations have been carried out to investigate the
influence of thea, term, the second-harmonic contribution in
the line tension, and the elastic anisotropy, parametrized by We enumerate in this section the forms taken by various
b, for the domains. Assuming the domains are nearly circulageometrical quantities of a 2D space curve in different coor-
and the anisotropies are weak, the perturbed domain shapdmate systems and the relationships between those forms. A
are then computed analytically to first order in small param-curve I' surrounding 0 can be represented by a one-

eters. We have examined the boundary response to the agarameter trajectory of the position vect(t), wheret is
isotropic parameterb anda,. Our results for the boundary parameter. Its unit tangent vector is givenfbydﬂds and
response ta, are in qualitative agreement with those re- the unit outward normal is given by=n/|n|, wheren=

orted in Refs[10,13. We have also obtained the depen- - -

gence of the boundary shape on domain size that is inpquaIF dr/ds’ and ds=|dr/dt|dt. We let & be the angle be- .

tative agreement with experimental findings whbr-0 E},\;}Z?]nt:]zer;(?iLns]ac:fvceucrt\?aru?rfet?: ;g'g?e and a reference axis.
[5,7]. As for the boundary response ) our perturbative ) no .

results contrast with the conclusions arrived at in Re@]. Co_nS|der the problem pf a nearl_y circular domain. Th_e

Textural correction plays an important role. These conclu-coordm-a te system of ch0|c_e is obviously p_Iane-poIar. It is
. . . ) : convenient to usep as the independent variable. We then

sions are confirmed in our numerical studjés,18. Theb _ = ko) k(o) : o
contribution to the boundary is much weaker than that of thdvrite I as r.(‘jo)_e P wheree™" is th% radial distance
line-tension anisotropy. The quality of the fit to the currently from the origin ande is the polar angle at. A length ele-
available experimental observations is not sensitive to thenent given byds=e*y1+k’2d¢ is in the positive direction

value ofb in the range from-0.5 to 0.5. Considering only of (. The unit vectom= —d?r/ds? points away from the

the line-tension anisotropg,, the result of the perturbative origin, or outwards fronT,

analysis has qualitatively captured the essential features of

the experimental observations. The quantitative mismatch Al

We are grateful to Professor Robijn Bruinsma, Dr. Jiyu

APPENDIX A: GEOMETRY AND COORDINATE
SYSTEMS

can be attributed in part to the inapplicability of a perturba- {:kpi’ (A1)
tive approach to a parameter region in which the anisotropic V1+k'?

parameters are large. The detailed difference between the

simple model we adopt and the actual complex underlying L~

structure of the_, domains may also contribute to such dis- n= p—Ke (A2)
crepancies. Long-range dipolar repulsion has been ignored. J1+k'2

The tilt degree of freedorfil9], which may not be significant

in the small domain regime but can be important in the large- ~ A . . P

R, region, is not included. We have cosi=n-x, which givesd= ¢—tan “k’. It follows
In the case of the bubbles, we evaluate the boundary réhat

sponse due to tha; contribution in the line tension. We are

able to produce a dependence of the shape of the bounding dd K" 1
curve on bubble size that compares favorably with experi- E: 1- LiK2 ek\/m' (A3)

mental observations. This result has been reported earlier in
Ref. [5]. The parameters of the domains and those of the
bubbles, both obtained with by-eye fit of the result of theSimilar relations can be derived for the case of a nearly cir-
analysis to the experimental data, are in reasonable agregular bubble. Here, the length element in the positive direc-
ment, taking into consideration the fact that the data for thaion of Q is ds= —e\/1+k’?d¢ and the outward normal
domains are taken in the,/LE coexistence region and n=d?r/ds®. We obtaind= 7+ ¢—tan 'k’. The geometri-
those for the bubbles are obtained for gaseous bubbles sua| quantities are evaluated as follows:

rounded by thel, phase. Finally, we have presented an

analysis of the effect of thermal fluctuations that leads to a

domain-size dependence of the line-tension and elastic o K'pte (Ad)
anisotropies. The analysis also suggests that the line-tension - [
anisotropy may be very strong. 1+k?
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The boundary integraf- is taken counterclockwise. The

. pKg _ _ : wise. ©f
n=— P ¢ , (A5) in Eq.(B2) is appropriate to the case of domains whileis

A/ 1o appropriate to bubbles. The equilibrium conditiohl/ 50

1+k : .
=0 results in the Euler-Lagrange equation
dd K" 1 dHy J dH, aHb_O B3
Pl , . (A6) X 90, ay 90, (B3
1+k 7 ekVi1+k'2

for (x,y) € Q, which can be reduced to E@.4). The bound-
Cartesian coordinates are useful when we are interested ary conditions can be expressed in a Cartesian coordinate
a small region of a large circular domain or bubble, on thesystem as follows:
scale of which the boundary is nearly a straight line. In Car-

tesian coordinates, we have for the position veater) K[G) d_y_@ d_X+b _(® d_x+® d_y cos 20
=x(t)x+y(t)y, wherex andy are the unit basis vectors. We “ds  Vds Yds  “"ds

can always picky as the independent variable are 7(y) dx dy

as the dependent variable for the cuiveThe symbolzn(y) + ( O,—— ®y—) sin20 | Fo'(9—0)

is chosen deliberately to avoid confusion with the indepen- ds ds

dent variablex for the texture®. We take() to reside in the —0. (B4)
regionx<<0, assume thdf nearly coincides with thg axis,

and take the virtual defect to be >0 near they axis as To display the derivation of the equilibrium equation for

depicted in Fig. 5. We havels=\/1+ 5'2dy traversing the bounding curvé’, it is more convenient to utilize plane-
along the positive direction df and n=—d?r/ds’>. We im-  polar coordinates. In the case of a domain, we rewrite the
mediately obtain free energy in plane-polar coordinate as follows

~ T k
"X+ = 2K
n'x+y 7 H[ k] L,{ fo Hoe?idk,

+o(p—tan k' —0@)e*J1+k'?|de. (B5)

. x—7'y
n=———. (A8)
1+7' We then take a variation of the free energy with respect to
k(#). The equilibrium condition results in the Euler-
The angle between the normal and tlReaxis is 9= Lagrange equation
—tan %', and
JH d JH o 86
ds o /1+ 77/23.
where

APPENDIX B: THE EXTREMUM EQUATIONS k
H[go;k,k’]=f Hyekrdk, + o(o—tan k' —0)
We begin with the free energy Eq2.1). In Cartesian 0

coordinates, the elastic energy den in Eg. (2.2 is
9v denstts In B. (2.2 X eI T2

given as (B7)

p To continue, we now look at the partial derivativeZgfwith
Hy=5{IV0?+ b[(—O;+6)cos 0 —-20,0,sin20]}.  respect tak. We have

(B1) M

—=H e+ (00’0 e 1+k'% (B8)
Taking the variation oH[ ®] with respect to®, we find ak

|,
vy

- é o' (9-0)60ds. (B2)

My 0 My, 9 H, We have also the partial derivative &f with respect td’,

d0  9x a0, dy 90,

}5®dA

IH (—o'+ok')ek
= (B9)

50ds oK’ Vi+K'2

Taking the derivative of Eq(B9) with respect to the inde-
pendent variable results in

dIHp dX+ IH, dy
76, ds " 36, ds
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d oH [o"(OK +0,)—c'k' (0K +6,) and the equilibrium condition can be obtained using the fol-
- = K ki K ¢ lowing Euler-Lagrange equation:
de gk’ Vi+k'?
12 " ANV (97‘( d &H
\/1+k/2 \/1+k/23 ’ 7 yﬁ??

Equation(3.11) for the case of a domain follows immedi- where

ately from the substitution of Eq$B8) and (B10) into the

Euler-Lagrange equation, E¢B6). We have assumed here n

that the curve joins smoothly gi= — r,7 and there is no H(e; ﬂ,ﬂ')zf Hpdx+o(9-0)V1+75'% (B17)
boundary contribution from these two end points. However, o

we are particularly interested in finding out if a cusp, in the

form of a discontinuity in the slope of the bounding curve, APPENDIX C: SAMPLE CALCULATION
exists. In our system, which is symmetric about thaxis, . o _
the singularity is expected to occur on tkeaxis. We thus We present here an analysis of the equilibrium equations

allow for the possibility thal” has a discontinuity in slope at for the special case in whida=0 and only a single&,>0.

¢=0 and determine the condition for the discontinuity. Theln this case, the bulk equation is automatically satisfied if we

assumption of a discontinuity il gives rise to an extra Write ® in the form of Eq.(3.4). We first consider the case of

boundary condition ap=0, a domain, for which the boundary condition is given by Eqg.
(3.2). We substitute the boojum textuf®, and find

IH
W =0. (Bll) Kaepk eip‘P e_ip€0
0+ - — —+ -
|Ro 1— aep(k+|‘P) 1— aep(k_“P)
. Ky —
Using Eq.(B9) and the fact tha® (e*) =0, we thus get i Pe_ etk eiPo_ Pk )
o o' (—tan k") (B12 2 |1-aePkti9) 1 gepk-in)|
o(—tan k')
K 1 N 1
For the line tension given in the form of E(.3), k=0 is =05 | " .
iR — yePktie) — yePk=ie)
always a solution to EqB12). In order fork’ to be nonzero of 1-ae 7 1-ae ‘
at ¢=0, it is necessary that the slope of the right-hand side ai 1— o2e2Pk 1— q2e2Pk
as a function ok’ atk’=0 be greater that unity, i.e., i S | =
20ePK| 1— aePktie) 1 gePk-ie)
d o'(—tan k')
K o—tam ) |, o —
o(—tan
K'=0 2.2pk pa__
=(a‘eP+2eae 1){1—aep(k+i"’)
This implies o(0)[c(0)+0"(0)]<0. We have excluded
such a condition, in that it requires eithier;| =0 or 3a, _ 1 _ (1)
=g, both of which are well beyond the parameter regime 1— qePk-io)|

that we are focusing on. The bounddhthat we are solving

for will not have a singularity. o -
In the case of a bubble, we have The above boundary condition is to be satisfied for all

(eX,¢) eT and hence the coefficient in E€C1) has to be 0,
which givesaeP*= — ex 1+ €2, wheree=x/(pa,Ry). To-

Hle;k,K' = j Hpe tdky + o (7 + @ —tan k' — 0) gether with the requirement thé@ does not have a singular-
K ity in Q, we arrive at Eq(3.7), whereR,=eX is the radius of
Xek\/m. (B14) the circular boundary. As for the case wheye<0, we sub-

stitute® _ = Oy + 7r/p into the boundary condition E@3.2).
Requiring that the texture is continuous @b, and we find
Eq. (3.7) with e=«/(play|Ry). The results for bubbles can
be obtained in a similar manner. Although we have demon-
§trated a solution 0® for p any integer, a circular domain
shape does not satisfy the equilibrium condition forin

This is similar to Eq(B7) apart from the limit of integration
in the first term on the right-hand side of the equation.

In the case of the Cartesian coordinate system, we writ
the free energy as

general.
H[ 7]= fx f” Hodx+ o (9—0) 1+ 7'2|dy We now examine the domain shape for the case in which
—w| J o p=1 by substituting the boojum texture and a circular

(B15) boundary into Eq(3.11). We have
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g|V®0|2:g{_[eiqofé(ek+i<p)_e—i<pf6(ek_i‘p)]

+[eety(ek o) +eief (e )]
=2kfo(e19)fo(e" 1)

2ka?

T (1— €%y (1- aek %)

2k’ aektie aekie
_l—a262k 1—aek+i“’+l—aek_i"°+1
= ! ! 1 Cc2
~ e 1— aektie 1—aek7i“’_ €23

and

o' (¢=00)Opt 0"(¢—00)0Oq,

a . . ) .
é{[eWP*@o) —e (e O [ektivfl (ghtiey

—ek_i‘Pf(')(ek_i‘P)]—[ei(“’_®0)+e_i(“’_®°)]
X[ek+i<pf(l)(ek+i<p)+ek—i<pf6(ek—igo)]}

— _alek[ei(ﬁfé(ekﬂ(p)+e7i@f6(ek7i<p)]

1

— +
1_aek+l(p

1

1—aekie]’

=a,ae" (C3)

Substituting Eqs(C2) and (C3) into Eq. (3.11), all the ¢

dependence cancels exactly. Equality is achieved by picking

N =a,aek—a,. We conclude that the circular domain with

boojum texture is an equilibrium configuration for the case

wherep=1. It is obvious that this is in general not true for
any otherp#1.

We now examine the case of the bubble for1. We
substitute the inverse boojuf; into Eq. (3.11). We com-

pute the following whert directors on the boundary favor
pointing in the bulk, or pointing away from the center of the
bubble, ora;>0,

o' (m+¢—0))0)+0"(m+¢—-0;)0;,

aja| €¢eP—ae™) e ?(e?—ae K

(1_ae—k—icp)2

ek (1_ae—k+i¢)2

(C4

When thec directors on the boundary favor pointing away

from the bulk, or pointing toward the center of the bubble, or

a,<0, we obtain
o' (¢=0)0;+0"(¢—0;)0;,

la)| | €¢(e'P—ae™™) e ?(ev—ae k)

k (1_aefk+igo)2 (1_aefk7i<p)2

e
(CH
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And the following contribution is independent of the sign of

aj:
ki<p_1)'

(C6)

1

l_aekari(p

1

1—ae™

las|a
a2k

K
51V0i[*=

Approximating®,~—-0,, ,~—-0,, and putting together
the above contributions, we find

aa 1 e'?(e?—ae™)
k'=— . T . tec
0| 1—ae ' (1—ae ")
A | €29—2ae Krieq]
=-— ——-5—tcc
goe"| (1—ae ¥'%)
aja | (1—a?e g%
=— . ., Tltcc.
00| (1—ae™ "'?)
Zalaze eiz(p 1 (C?)
=— —— +1+c.c.,
0_Oe2k (1_a,e—k+|<p)2

which reduces to E(J6.3). We keep in the expressions lof
only the apparently nontrivial terms and drop arbitrarily the
constant terms for convenience. In the actual evaluatidq of
the constant is reinserted intd to enforce the symmetry
requirement’ (¢) = —k’(—¢). The boundary correction is
taken to have little modification to the overall area enclosed
and the treatment for fixing the area using the Lagrange mul-
tiplier A is ignored.

APPENDIX D: EVALUATION OF THE THERMAL
AVERAGES

In this appendix, we describe the detail evaluation of
(O(e)O(¢'))o and (exdiZqO(¢)])o that we encountered
in Sec. VII. The averagéO), is taken with respect to

Ho[®]= %JQdAW@lz. (D1)

We first note that the extremum equation faris given by
Laplace’s equatioW 20 =0 in which the solution accommo-
dates any boundary condition. Hence we can wWeltg,y)
=0,(x,y)+05(x,y) in general, where

V20,=0, (D2)

It can be shown further th&, indeed minimizesi [ O ]. At

low temperature, contributions from lar@e, are suppressed
in the partition function. We shall assum@,<®; and
Ho[®] is second order if®,. The quantity®, can be ne-

glected and we have, in the case of a domain,
0= pM(ane™+are M), (D4)
m=1

Ho[ ©®] can then be evaluated,
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Ho=4m >, m|Ay? (D5)
m=1

whereA,,=amRo.
We let ®y(¢) =0 (Ry cose,Rysing),

f (DO)O()O(¢')e Fro

(Oo(@)O4(¢"))o=
f(D@)e‘EHO

]nI f dAAAL S, S (A e+ Ar e ko) (A ¢ + AT 67K ¢') = 27BrSmAnAn

2[1 f dAdA: e 2B ArAn
n

f dAAAL AAE e~ 2TBRKARY
= Z [elk(e=¢") 4 g ik(e=e)] =
k=1 Zf dAJAS o 2mBrKAAY

A elk(e—e") 4y g=ik(e—¢)
2

=- %{In[l—ei(“”‘*")]Jr In[1—e (e~ = — %In asif £t = - In|X;:,| (D6)
When ¢— ¢', we then introduce an ultraviolet cutd®,/a in the sum
Ro/a Ry
<2(¢)>0=Ak21 A (D7)
Evaluation of(exdiZ;g;®(¢;)])g is best illustrated with
(O 0Ey = S S (i@ () M ~i0(¢2)]™)e. (D8)

ml:O m2:() ml! m2!

We will apply Wick’s theorem to compute the above average. We first note that the average vanishas, wimenis odd.
When bothm; andm, are even, we have

i : O(1)0(02)h (~0%(e1)g™ " (—O%(p2))g™
(['®(¢1)]m1[_|®(¢2)]m2>0=ml!m2!|%en< <p1” oo m; —| . B my—| - -
( 3 )!2<m1 H/2 (T)!Z(mz /2

) (0(02)0(92))g" (= O(2))g" " (= O(¢2))p* "
=2 N T e (o2

Np=

(D9)
wherem;=2n;, my,=2n,, andl=2ny. Similarly we can obtained for the cases where hothandm, are odd as below,

| N N (0(£2)0(¢2))0" " (—0%(e1)g" ™ (~O%(¢))g? ™
<[|®((Pl)] 1[_|®(¢’2)] 2>0:(2n1+1)!(2n2+1)!n02=0 (2n0+ 1)] (nl_no)!znl—no (nz_no)!znz—no !
(D10)

wherem;=2n;+1, my,=2n,+1, andl=2ny+ 1. Combining these contributions in E@8), we get

<ei[®("°1)*®("’2)])0= 2 <®(€D1)®(€Dz)>go <_®2(<Pl) 31 <_®2(<Pz) 82

Np=0 n;=0 n,=0 Ne! n,!12n n,!2M"

— 6021 0(¢2))0g~(B(¢1)0(2))0/25— (B (£1)O(¢2))0/2— o~ [O(1) ~ O(¢2)] %12 (D12)

Although more tedious enumerations of the combinations of the correlation functions must be carried out in order to evaluate
(exdiZiq0(#)])o, the same principle applies.
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It can be observed in this simple case that the contribution in the partition functiofy 2gof
<ei[®(<p1)+®(<p2)]>oz e (0(¢1)0(¢2)0a=(O(91)0(¢2))02a=(O(1)O(92))0/2— =24 IN(Ry /) g~ A In(x—x'/a) (D12
is approximately a factoe™ 22 "/ smaller than that of

(ellOen = O(e2)]y — A In(x—x")/a_ (D13)
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